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Abstract

Three series of uniaxial tensile tests with constant strain rates are performed at room temperature on isotactic
polypropylene and two commercial grades of low-density polyethylene with different molecular weights. Constitutive
equations are derived for the viscoplastic behavior of semicrystalline polymers at finite strains. A polymer is treated as
an equivalent network of strands bridged by permanent junctions. Two types of junctions are introduced: affine whose
micro-deformation coincides with the macro-deformation of a polymer, and non-affine that slide with respect to their
reference positions. The elastic response of the network is attributed to elongation of strands, whereas its viscoplastic
behavior is associated with sliding of junctions. The rate of sliding is proportional to the average stress in strands linked
to non-affine junctions. Stress—strain relations in finite viscoplasticity of semicrystalline polymers are developed by using
the laws of thermodynamics. The constitutive equations are applied to the analysis of uniaxial tension, uniaxial
compression and simple shear of an incompressible medium. These relations involve three adjustable parameters that
are found by fitting the experimental data. Fair agreement is demonstrated between the observations and the results of
numerical simulation. It is revealed that the viscoplastic response of low-density polyethylene in simple shear is strongly
affected by its molecular weight.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is concerned with the viscoplastic response of semicrystalline polymers at isothermal de-
formations with finite strains. The experimental part of the study focuses on the rate-dependent behavior of
isotactic polypropylene (iPP) and two grades of low-density polyethylene (LDPE) with different molecular
weights. The choice of iPP and LDPE for the investigation is explained by (i) their numerous industrial
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applications (oriented films for packaging, reinforcing fibres, non-woven fabrics, pipes, wire coatings, fuel
tanks, etc.), and (i) variety of crystalline morphologies (ranging from monoclinic o spherulites in iPP to
orthorhombic structures in LDPE) and molecular architectures in the amorphous phase of these polymers
(ranging from short side branches to highly branched chains) that noticeably affect their mechanical and
physical properties.

Isotactic polypropylene is a semicrystalline polymer containing three crystallographic forms: monoclinic
o crystallites, hexagonal f structures, orthorhombic y polymorphs, and “‘smectic” mesophase (Iijima and
Strobl, 2000). At rapid cooling of the melt (at the stage of injection molding), o crystallites and smectic
mesophase are mainly developed, whereas f§ and y polymorphs are observed as minority components
(Kalay and Bevis, 1997). A unique feature of the crystalline morphology of iPP is the lamellar cross-
hatching: development of transverse lamellae oriented in the direction perpendicular to the direction of
radial lamellae (Iijima and Strobl, 2000; Maiti et al., 2000). The characteristic size of spherulites in injec-
tion-molded specimens is estimated as 100-200 um (Kalay and Bevis, 1997; Coulon et al., 1998). These
spherulites consist of crystalline lamellae with thickness of 10-20 nm (Coulon et al., 1998; Maiti et al.,
2000).

Low-density polyethylene is a semicrystalline polymer with orthorhombic crystalline structure. Linear
chains in LDPE contain a large number of side branches (both short and long) that prevent macromole-
cules from packing closely in crystallites and result in a wide distribution of sizes of spherulites. The
average radius of spherulites equals 3-12 um (Graham et al., 1997). The spherulites are formed by
lamellae stacks with lamellar thicknesses ranging from § to 12 nm (Matsuda et al., 2001). The average
size of lamellae and their curvature, as well as the type of their organization into spherulites are strongly
affected by crystallization conditions, molecular weight and the degree of branching of chains (Guichon
et al., 2003).

The amorphous phase of iPP and LDPE is located (i) between spherulites, (ii) inside spherulites in
“liquid pockets” between lamellar stacks (Verma et al., 1996), and (iii) between lamellae in lamellar stacks.
It consists of (i) relatively mobile chains between spherulites and in liquid pockets, and (ii) severely re-
stricted chains (the so-called rigid amorphous fraction: part of the amorphous phase whose molecular
mobility is substantially suppressed by surrounding crystallites) (Verma et al., 1996).

In the past five years, viscoplasticity and yielding of iPP have been investigated by Coulon et al. (1998),
Seguela et al. (1999) and Nitta and Takayanagi (1999, 2000). Viscoplasticity of polyethylene with relation to
its crystalline morphology and topology of chains have been studied by Gaucher-Miri and Seguela (1997),
Graham et al. (1997), Brooks et al. (1998, 1999a,b), Hiss et al. (1999), Hobeika et al. (2000) and Seguela
(2002).

Deformation of a semicrystalline polymer at relatively small, but finite strains induces inter-lamellar
separation, rotation and twist of lamellae, fine (homogeneous shear of layer-like crystalline structures) and
coarse (heterogeneous inter-lamellar sliding) slip of lamellar blocks and their fragmentation (Gaucher-Miri
and Seguela, 1997; Hiss et al., 1999), chain slip through the crystals, sliding and breakage of tie chains
(Nitta and Takayanagi, 1999), detachment of chain folds and loops from the interfaces of crystal blocks
(Gaucher-Miri and Seguela, 1997), and activation of the rigid amorphous fraction. At very large strains,
disintegration of spherulites results in large-scale separation of lamellar blocks and transformation of
spherulites into a fibrillar texture (Gaucher-Miri and Seguela, 1997; Nitta and Takayanagi, 2000), cavi-
tation and stress-induced crystallization of chains in the amorphous phase.

To account for these morphological transformations in a constitutive model with a relatively small
number of adjustable parameters, we apply a method of homogenization. According to it, a sophisticated
micro-structure of a semicrystalline polymer is replaced by a single phase ““‘whose internal micro-mechanical
state is tracked as a function of applied deformation” (Bergstrom et al., 2002). As the equivalent phase, a
network of macromolecules is conventionally chosen (Sweeney et al., 1997, 1999; Bergstrom et al., 2002) for
the following reasons:
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1. The time-dependent response of solid polymers is associated with rearrangement of chains in amorphous
regions.

2. The viscoplastic flow in semicrystalline polymers is “initiated in the amorphous phase before transition-
ing into the crystalline phase” (Meyer and Pruitt, 2001).

3. Sliding of tie chains along and their detachment from lamellae play the key role in the yielding pheno-
menon (Nitta and Takayanagi, 1999).

To develop stress—strain relations in an explicit form, a network is treated as incompressible. Obser-
vations show that isotactic polypropylene and low-density polyethylene are weakly compressible polymers
(Powers and Caddell, 1972). However, their compressibility is disregarded in the present study.

A semicrystalline polymer is modelled as a network of chains bridged by junctions (entanglements,
physical cross-links on the surfaces of crystallites and lamellar blocks). All junctions are treated as per-
manent (chains cannot separate from their junctions during the experimental time scale), which implies that
the viscoelastic effects associated with rearrangement of chains (Drozdov and Christiansen, 2002) are ex-
cluded from the consideration.

To describe the viscoplastic phenomena, the network is assumed to deform non-affinely: junctions can
slide with respect to their reference positions under loading. Sliding of junctions in an equivalent network
reflects (i) sliding of entanglements with respect to chains in the amorphous phase, (ii) slippage of tie chains
along lamellar surfaces, and (iii) fine and coarse slip of crystalline lamellac. Unlike previous works in
rheology of non-affine networks (Glatting et al., 1994; Wedgewood and Geurts, 1995; Sun et al., 2000),
two types of junctions are introduced: affine (whose ability to slide is restricted by nearby chains in
the amorphous phase and lamellar blocks), and non-affine (that can freely slide with respect to sur-
rounding macromolecules). The novelty of the present approach compared to the previous study (Drozdov
and Christiansen, 2003) is that we assume the rate-of-strain tensor for viscoplastic deformations to
be proportional to the deviatoric component of the Cauchy stress tensor (not to the rate-of-strain tensor
for macro-deformations). This allows a non-linear kinetic equation to be derived for the left Cauchy—Green
tensor for elastic deformations similar to the differential equation for the evolution of the orientation
tensor in the pom—pom model for branched polymer melts (Bishko et al., 1997; McLeish and Larson,
1998).

The objective of this work is threefold:

1. To report experimental data in uniaxial tensile tests with finite strains on isotactic polypropylene and two
grades of low-density polyethylene with different molecular weights.

2. To develop constitutive equations for the viscoplastic behavior of a semicrystalline polymer and to de-
termine adjustable parameters in the stress—strain relations by fitting the observations.

3. To demonstrate that the crystalline morphology and the molecular weight of semicrystalline polymers
substantially affect their mechanical response.

The exposition is organized as follows. Experimental data in uniaxial tensile tests are reported in Section
2. Kinematic relations for non-affine deformation of an equivalent network are developed in Section 3. A
kinetic equation for the rate-of-strain tensor for sliding of junctions is introduced in Section 4. Constitutive
equations for a semicrystalline polymer at isothermal deformation with finite strains are derived in Section
5 by using the laws of thermodynamics. The stress—strain relations are simplified for uniaxial tension in
Section 6 and for simple shear in Section 7. Adjustable parameters in the governing equations are deter-
mined in Section 8 by fitting observations in tensile tests. The dependencies of the material constants on the
molecular weight and pressure are further investigated in Section 9 by matching experimental data in
compression tests. Section 10 deals with numerical simulation of the viscoplastic behavior of LDPE in
simple shear. Some concluding remarks are formulated in Section 11.



6220 A.D. Drozdov, R.K. Gupta | International Journal of Solids and Structures 40 (2003) 6217-6243

2. Experimental procedure

Isotactic polypropylene (Novolen 1100L) was supplied by BASF (Targor), low-density polyethylene
(Lupolen 2410T) was donated by BASF (Basell), and low-density polyethylene (Huntsman PE 1020) was
purchased from GE Plastics. Granules were dried at the temperature 7 = 100 °C for 12 h before molding
in injection-molding machine Battenfeld 1000/315 CDC (Battenfeld). ASTM dumbbell specimens were
injection-molded with length 148 mm, width 9.8 mm and thickness 3.8 mm.

The average molecular weights of two commercial grades of LDPE are not provided by the suppliers.
Melt-flow index (MFI) of Lupolen 2410T equals 36 g/10 min (test method ISO 1133), whereas that of
Huntsman PE 1020 equals 2 g/10 min (test method D 1238). As the melt-flow index is inversely propor-
tional to M**, where M is the weight-average molecular weight, Lupolen 2410T is treated as low-density
polyethylene with low molecular weight, while Huntsman PE 1020 is referred to as low-density polyethylene
with high molecular weight. For the sake of brevity, these polymers are abbreviated as LDPE-L and LDPE-
H, respectively.

Uniaxial tensile tests were performed at room temperature on testing machines Instron-5568 (iPP and
LDPE-L) and Instron-5869 (LDPE-H) equipped with electro-mechanical sensors for the control of lon-
gitudinal strains in the active zone of samples (with a distance of 50 mm between clips). The tensile force
was measured by a standard load cell. The engineering stress o. was determined as the ratio of the axial
force to the cross-sectional area of stress-free specimens.

Mechanical tests were carried out on samples not subjected to thermal pre-treatment. To minimize the
effect of physical aging, experiments were performed at least three days after injection-molding. Each test
was conducted on a new specimen. Necking of samples was not observed in experiments.

In the series of tests on LDPE-L, specimens were loaded with constant cross-head speeds of 5, 10, 25, 50,
100, 150 and 200 mm/min, which corresponded to the Hencky strain rates ég = 9.80 x 107, 2.03x 1073,
5.16x1073,9.92x 1073, 2.07x 1072, 3.03x 1072 and 4.00x 10~ s~!, respectively, up to the maximal Hencky
strain egmax = 0.3.
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Fig. 1. The engineering stress 0. MPa versus the elongation ratio & in tensile tests with the cross-head speeds 5, 10, 25, 50, 100, 150 and
200 mm/min from bottom to top, respectively. Circles: experimental data for LDPE-L. Solid lines: results of numerical simulation.
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Fig. 2. The engineering stress . MPa versus the elongation ratio & in tensile tests with the cross-head speeds 3, 13, 25, 127 and 254 mm/
min. Circles: experimental data for LDPE-H. Solid lines: results of numerical simulation.
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Fig. 3. The engineering stress o. MPa versus the elongation ratio & in tensile tests with the cross-head speeds 5, 10, 30, 50 and 100 mm/
min from bottom to top, respectively. Circles: experimental data for iPP. Solid lines: results of numerical simulation.

In the series of tests on LDPE-H, specimens were loaded with constant cross-head speeds of 3, 13, 25,
127 and 254 mm/min (0.1, 0.5, 1.0, 5.0 and 10 in/min), which corresponded to ég = 6.48 x 1074, 2.03x 1073,
3.60x1073, 1.98x 1072 and 3.97x 1072 s7!, respectively, up to the maximal Hencky strain ey ., = 0.4.
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In the series of tests on iPP, specimens were loaded with constant cross-head speeds of 5, 10, 30, 50 and
100 mm/min, which corresponded to ég = 9.80 x 107, 2.03x 1073, 7.16x 1073, 9.92x 103 and 2.07x 1072,
respectively, up to the maximal Hencky strain eyp,x = 0.12. This relatively small value of the maximal
strain was chosen to avoid necking of specimens at the cross-head speeds of 50 and 100 mm/min.

The chosen strain rates ensured nearly isothermal experimental conditions, on the one hand, and they
allowed the viscoelastic effects to be disregarded, on the other.

The engineering stress o, is plotted versus the elongation ratio & in Figs. 1-3. The stress—strain diagrams
show that (i) the dependence of stress g. on the engineering strain ¢, = k — 1 is strongly non-linear even at
relatively small strains, and (ii) given an elongation ratio k, the stress ¢, monotonically increases with the
strain rate.

For LDPE-L, the engineering stress strongly increases with &£ in the initial region of deformations,
reaches its ultimate value in the vicinity of the point k£ = 1.15, and weakly decreases afterwards. For LDPE-
H, 0. monotonically increases with & in the entire region of deformations under consideration. For iPP, the
stress o, increases with & in the initial region of deformations and remains practically constant when &
exceeds 1.09. It is worth noting that Figs. 1-3 present the dependence of the engineering stress o. on the
elongation ratio k. The true stress estimated (based on the incompressibility condition) as o; = g.k
monotonically grows with & for all three polymers.

Our aim now is to develop constitutive equations that correctly describe the experimental data depicted
in Figs. 1-3.

3. Kinematics of sliding

A semicrystalline polymer is treated as an incompressible permanent network of strands bridged by
junctions (entanglements between chains in the amorphous regions, physical cross-links at the surfaces of
crystallites and lamellar blocks). Macro-deformation of the network induces sliding (non-affine motion) of
some part of the junctions with respect to their reference positions. In this section, kinematic relations are
developed for the left and right Cauchy—Green tensors for elastic deformation of a non-affine network.

With reference to the conventional concepts in non-linear mechanics (Haupt, 2000), three configurations
of an arbitrary element are introduced: (i) the reference configuration describes the position of this element
before application of external loads, (ii) the actual configuration characterizes its position in the deformed
state, and (iii) the intermediate configuration determines the current position of junctions driven by their
sliding. Transformation of the reference state of a network into its actual state at time ¢ > 0 is determined
by the deformation gradient F(¢). Transformation of the reference state into the intermediate state is
characterized by the deformation gradient F,(¢), where the subscript index “p” indicates that non-affine
motion of junctions is associated with their viscoplastic flow. Transformation of the intermediate state into
the deformed state is described by the deformation gradient F. (), where the subscript index “‘€” means that
F. reflects elastic deformation of the network (in the sense that its mechanical energy is as a function of F.).
The tensors F(¢), F.(f) and F,(¢) are connected by the multiplicative decomposition formula (Lee, 1969)

F(1) = Fe(1) - Fp (1), (1)

where the dot stands for the standard dot product of tensors (Drozdov, 1998). Eq. (1) was proposed for
non-affine networks in Buckley and Jones (1995), where F. and F,, were identified as the “network stretch”
tensor and the “‘slippage stretch’ tensor.

The derivatives of the tensor F(¢) and its inverse F~'(¢) with respect to time ¢ read

dF dF! »
4, O =L0) F@), =) =-F(1) L), (2)
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where L(#) is the velocity gradient in the actual state. The derivatives of the tensors F(¢) and F, '(t) are
given by the formulas similar to Egs. (2),

dF dF,’ »

SO =Ly(0) Fy0), =) = —F,' (1) Ly(0), ()
where L (¢) is the velocity gradient for sliding of junctions. It follows from Eq. (1) that

dF d dF dr;’

—(t) =—[F(@t) - F,' ()] = = (t) - F;' (¢t) + F(¢) - —2> ().

(0 = F0) B (0] = 50 F, (0 + F(0) - =2 ()
Substitution of Egs. (2) and (3) into this equality results in

dF.

(0 = L(0) - Fult) = Fu(t) Ly (1), 4)
The left and right Cauchy—Green tensors for elastic deformation are given by

B.(t) = F(t) - Fi(f), Ce(t) =F(t)-Fe(t), (5)

where T stands for transpose. We differentiate the first equality in Egs. (5) with respect to time, use Eq. (4)
and find that

dze (1) = L(2) - Be(t) + Be(2) - LT (1) — 2F.(¢) - D, (¢) - F1 (2), (6)
where
Dy(6) = 5 Ly(0) + LE(0)

is the rate-of-strain tensor for sliding of junctions. Similarly, differentiation of the other equality in Egs. (5)
implies that

% (£) = 2F] (1) - D(1) - Fe(r) — L} (1) - Ce(t) — Ce(t) - Ly (1), )
where
D(1) = %[L(z) +LT(1)]

is the rate-of-strain tensor for macro-deformation. Bearing in mind that for any smooth tensor function
W(),

dw! o dW »
g O="W(). -0 W),

we find from Eq. (7) that

dc;'
de
The first principal invariant of the right Cauchy—Green tensor C.(¢) reads

Jel (t) = jl (Ce(t)) = Ce(t) : I,

(1) = =2F.'(0) - D(1) - [ (0] + C. (1) - Ly (1) + Ly (1) - €. (1). (®)

where #; denotes the first invariant of a tensor, I is the unit tensor and the colon stands for convolution.
Differentiating this equality with respect to time and using Egs. (5) and (7), we obtain
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3 1) =2[Be(t) : D(r) — Ce(r) : Dy (1)]. ©)

For an incompressible medium, the second principal invariant of the right Cauchy—Green tensor C.(¢) is
given by

Ja(t) = 51(C: (1) = C; (1) : L.

It follows from this equality and Egs. (5) and (8) that

Y2 (1) = 2B, () : D) — € (1) D (1), (10)

Egs. (9) and (10) imply that the derivative of an arbitrary smooth function ®(J,,J;) of the first two
principal invariants of the right Cauchy—Green tensor for elastic deformation C,(#) with respect to time ¢ is
determined as

€2 (1), (1)) = 2[@1()BL(r) —~ Ba(0B, (0] - DE) — [@1()Cl0) — B()C (0] : D)}, (1)
where
D) = LU0 J(0) (= 1,2). (12)

By analogy with Egs. (5), we introduce the left and right Cauchy—Green tensors for transition from the
reference state to the deformed state at time ¢ > 0,

B(t) =F(1)-F'(¢), C(t) =F'(¢t)-F(¢). (13)
For an incompressible medium, the first two principal invariants of these tensors read
J(t) =71(Ct) =C@t): I, L()=2(C' 1) =C"'(1):L

The derivatives of the functions J;(¢) and J,(¢) with respect to time are determined by Eqs. (9) and (10),
where the rate-of-stress tensor D, is omitted and the tensor B, is replaced by B,
%(t) =2B(¢) : D(¢), %(I) = —2B.' (1) : D(¢). (14)

It follows from Egs. (14) that the derivative of an arbitrary smooth function ¢(J;,J;) of the first two
principal invariants of the right Cauchy—Green tensor C(¢) with respect to time 7 is given by

d
d—(f(Jl(t)’Jz(f)) = 2[$,(1)B(t) — $o(1)B™'(1)] : D(1), (15)
where the functions ¢,(¢) and ¢,(¢) are determined by the formulas similar to Egs. (12),
d
Ball) = S G0, 2(0) (= 1.2), (16)

Our aim now is to establish connections between the rate-of-strain tensor for sliding of junctions D, (¢)
and the Cauchy stress tensor for macro-deformation X().
4. Kinetics of sliding

According to the conventional approach in rational mechanics (Truesdell, 1977), the rate-of-strain
tensor Dy, for viscoplastic deformation for an incompressible medium is an isotropic tensor function of the
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deviatoric component X’ of the stress tensor . Confining ourselves to linear relationships between the two
tensors, we write

Dy (1) = a(t)X'(0), (17)

where «a is a scalar material function. A substantial shortcoming of Eq. (17) is that it does not satisfy the
objectivity condition (Haupt, 2000). To prove this assertion, we superpose rigid rotation in the actual state,

°(t) = O(1) - x (), (18)

where r(¢) is the radius vector of an arbitrary point in the deformed state at time #, r°(¢) is its radius vector in
the transformed state, and O(¢) is an orthogonal tensor. Under transformation (18), the objective tensor
Y’ is replaced by the tensor

2(1) = 0@) - Z'(¢) - O (), (19)

whereas the tensor D, (#) remains unchanged, because this tensor is uniquely determined by the radius

vector in the intermediate configuration, which is not affected by rigid rotations in the deformed state.
To develop an analog of Eq. (17) that satisfies the objectivity condition, we introduce the left polar

decomposition of the deformation gradient for transition from the intermediate state to the deformed state,

Fe(t) = Ve([) ’ Re(’)a (20)
where R (¢) is an orthogonal rotation tensor, and V.(¢) is a symmetric stretch tensor,

R:(1) =R.'(1),  Ve(r) = Ve(o).

[

Substitution of expression (20) into the first equality in Egs. (5) implies that

Vo) = Be(1). (21)
Under rigid rotation in the deformed state, the elastic deformation gradient F, is replaced by the tensor

Fe(r) = O(1) - Fe(0). (22)
It follows from Egs. (5) and (22) that the left elastic Cauchy—Green tensor B.(#) is transformed as

B.(1) = O(r) - Be(1) - O'(1). (23)
According to Egs. (21) and (23), the elastic stretch tensor V. is replaced by the tensor

V(1) = O(1) - Ve(r) - O' (). (24)

Substitution of expressions (22) and (24) into Eq. (20) results in the formula for transformation of the
rotation tensor,
RY(1) = O(1) - Re(1). (25)

The deviatoric component of the Cauchy stress tensor ¥’ is split into the sum of deviatoric components
of two stress tensors,

() = (1) + Z,), (26)

where X characterizes the extra stresses in strands linked to sliding junctions and X/ describes the extra
stresses in strands with non-sliding (affine) junctions. The tensors X, and X/ are assumed to transform
according to the rule (19) under rigid rotation (18) in the actual state.

The following analog of Eq. (17) is introduced:

D, (1) = a(t)R; (1) - Z((1) - Re(1), (27)
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which implies that the rate of sliding of junctions is proportional to the stress arising due to stretching of
chains linked to these junctions.

At small strains (when the tensor R, may be replaced by the unit tensor I), Eq. (27) coincides with kinetic
equation (17), provided that all junctions are non-affine, X = 0. Substituting Egs. (19) and (25) into Eq.
(27), we find that this equation is objective (independent of rigid rotations in the deformed state). Finally,
Egs. (27) together with the orthogonality property of the rotation tensor R. implies that for an incom-
pressible network, the flow of junctions is volume preserving,

Z1(Dy(£)) = 0. (28)
It follows from Egs. (6), (20) and (27) that
900 = L(1) - Bo(0) + Bu(t) - L7(0) ~ 2a(0)Vel)- E(0) - Vel (29)

Egs. (5), (20), (21) and (27) imply that
Ce(t) : Dy(r) = S1(F; (1) - Fe(t) - Dy (1)) = a(1) 71 (Re(7) - F (1) - Fe(r) - Re (1) - Z(1))
= a(t) 71 (Ve (1) - Zi(1)) = a(t)Be (1) - Z(0).
By analogy with this equality, we find that
C.'(1) : Dy(t) = (0B, (1) : EL(0).

Substitution of these expressions into Eq. (11) results in
do -
7 Ve (0),Ja(0)) = 2[@1(1)Be(r) — @2(6)B. (1)) : [D(1) — a(t)E(1))-
Bearing in mind that for any symmetric tensors, A; and A, such that .#,(A,) = 0, we have
A1 2A2:Al| IAz,
where the prime stands for the deviatoric component of a tensor, and using the incompressibility condition
J1(D) =0, we arrive at the formula
do
dr
Our aim now is to apply Egs. (15) and (30) in order to derive constitutive equations for an equivalent
network of chains by using the laws of thermodynamics.

(Jer (1), Jea(r)) = 2[@1 (1)Be(r) — D2(1) B (1)) [D(r) — a(r) E{(0)]. (30)

5. Constitutive equations

Denote by n, the average number of affine junctions per unit volume, and by », the average number of
sliding (non-affine) junctions. The quantities n, and n, are assumed to be independent of mechanical factors.

A strand is modelled as an incompressible isotropic elastic medium with the strain energy w that depends
of two first principal invariants of an appropriate right Cauchy—Green tensor. For a strand linked to affine
junctions, the strain energy w is a function of the invariants J; and J, of the tensor C, whereas for a strand
connected to sliding junctions, w is a function of the invariants J;; and J,, of the tensor C,.. Neglecting the
energy of interaction between strands (this energy is taken into account by the incompressibility condition),
we determine the strain energy density of a polymer (per unit volume) as the sum of the mechanical energies
of strands,

W = naW(Jl,Jz) + nsW(JehJez). (31)
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For isothermal deformation of an incompressible medium at a reference temperature 7,, the Clausius—
Duhem inequality reads (Haupt, 2000)

o) = _ddl;/(t) +X'(¢) : D(¢) = 0, (32)

where Q is internal dissipation per unit volume, and the deviatoric component X' of the Cauchy stress
tensor X is determined by Eq. (26). Substituting expression (31) into Eq. (32) and using Egs. (15), (26) and
(30), we arrive at the formula
0(t) = {Z{(t) — 2ns[wer (1)Be(r) — wea (1) B (1)]'} = D(2) + {Z(1) — 2na[wi (1) B(2) — wa(6)B™ (1))}
:D(t) + 2a(t)n L (2) = [wer ()Be(t) — wea (£)B; ' (£)] = 0, (33)
where the functions we; (¢) and we,(¢) are given by Eq. (12), the functions wi(¢) and w,(¢) are determined by

Eq. (16), and the prime denotes the deviatoric component of a tensor. Inequality (33) is satisfied for an
arbitrary program of loading, provided that the expressions in braces vanish,

X/ (£) = 2ng[wer (1) Be(t) — wea (OB, (1)), ZL(t) = 2n,[w1 (6)B(£) — wa () B (2)]'. (34)
According to Egs. (33) and (34), the internal dissipation per unit volume reads

O(t) =a()Z. : X > 0.
Egs. (26) and (34) imply the stress—strain relation

B(1) = —P()1+ 2n,[w1 ((B(1) — w () B~ ()] + 2 fwer (1)B (1) — wea (1)B; ' (0), (33)

where P(¢) is pressure. Eq. (35) determines the Cauchy stress tensor X in terms of the left Cauchy—Green
tensors for macro-deformation B and elastic deformation B,. When the number of sliding junctions #
vanishes, Eq. (35) coincides with the conventional Finger formula for an elastic medium.

It follows from Egs. (29) and (34) that the left Cauchy—Green tensor for elastic deformation B, obeys the
equality

dB.
dt

(1) = L(1) - Be(t) + Be(r) - LT (1) — 4a(t)nVe(r) - [wer (6)Be(t) — wea (1) B (1)) Ve(0).

Bearing in mind that A’ = A —{.#,(A)I for an arbitrary symmetric tensor A, and taking into account that
for an incompressible medium,

S1(Be(t)) = Jar (1), S1(B. (1)) = Jea (1),

we find that
dj;e (£) = L(2) - Be(£) + Be(2) - LT () — 4a(t)nsVe(t) - [we (£)Be(t) — wez(t)B;1 ()] - Ve(2)
+ 20 (e (1) = wea (DM OV, (36)

It follows from Eq. (21) that
Ve(t) ’ Be(t) : Ve(t) = Bg(f), Ve(t) : Bil(t) : Ve(t) =L

€

Substitution of these expressions and Eq. (21) into Eq. (36) implies the kinetic equation for the left Cauchy-
Green tensor for elastic deformation B,
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% (1) =L(t) - Be(t) + B (¢) - L™ (¢) — 4a(t)n5{wel (t)Bﬁ(t) - % [Wei (£)Je1 (2) — Wea (£)Jea ()| Be(£) — wez(t)l}.
(37)

Bearing in mind the dimensions of the rate-of-strain tensor for plastic flow D, and the stress tensor X, in
Eq. (27), it is convenient to present the coefficient a in the form

alt) =512, (38)
where
1/2
Di(t) = ED(r) : D(t)} (39)

is the intensity of macro-strain rate, and 2, is an equivalent stress. Combining Eqs. (37) and (38), we
obtain

dB
dr

e (t) = L(t) . Be(t) +Be(t) . LT(t) _4n, %(l‘)

{1 OB20) 01 010~ Vo 0800 — walon .

(40)

In what follows, we concentrate on the mechanical response of a network of flexible chains (Treloar, 1975)
with the mechanical energy

w(Ji, ) = c(J; — 3), (41)

where c is the average rigidity per strand. Substitution of expressions (12), (16) and (41) into Eq. (35) results
in the stress—strain relation

E(1) = —P(0)1 + 2u[B, (1) + pB(1)], (42)
where 1 = cny is an analog of the elastic modulus, ¢ = n,/n is the concentration of affine junctions, and the
same notation P is used for the unknown pressure. Combining Eqs. (40) and (41) and using Egs. (12) and
(16), we arrive at the non-linear differential equation for the evolution of the tensor B.,

dB. _4uD;(1) 1

dr e B (1) — §Jel (0)B.(1) |- (43)

(1) = L(r) - Be(r) + Be(r) - LT(1)

Formulas (42) and (43) provide constitutive equations for the analysis of experimental data in three-
dimensional mechanical tests. For an arbitrary loading with a constant strain rate D;, these equations
involve three material constants, i, ¢ and X4, to be found by matching observations.

Our aim now is to simplify these relations for uniaxial tension and simple shear of a specimen. We
confine ourselves to active deformation programs, when the elongation ratio and the coefficient of shear
monotonically increase with time.

6. Uniaxial tension

Points of a medium refer to Cartesian coordinates {X;} (i = 1, 2, 3) in the stress-free state, to Cartesian
coordinates {x;} in the deformed state, and to Cartesian coordinates {¢;} in the intermediate state at time
t = 0. Uniaxial tension of the incompressible medium is described by the formulas

X1 = k(f)Xl, Xy = kil/Z(l‘)Xz, X3 = kil/z(l‘)Xg, (44)
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where k = k(¢) is an elongation ratio. Transformation of the reference state into the intermediate state is
determined by the equations similar to Eq. (44),

G=rX, &=1"P0X%, &=x"0X, (45)
where x(¢) is a function to be found. It follows from Egs. (44) and (45) that

1 K\
B = k2elel —+ % (e2e2 + e3e3), Be = <Kj> ee + % (e2e2 + 6363), (46)
where e; are base vectors of the Cartesian frame {X;}. According to Eq. (44), the velocity gradient L reads
L=Efere - Leses + esen) (47)
y €1€ 3 €6 —€3€63) |,
where k(r) = dk(z)/dz. Eqs. (39) and (47) imply that
k
Di = . 48
k (48)

Substitution of expressions (46) into Eq. (42) results in
L =Xee + 2s(exe; + eses),

where the non-zero components of the Cauchy stress tensor are given by

k 2
3 = —P—&-Zu((;) +(pk2>, 5=—prou(F+2).

Excluding the unknown pressure P from these equations and the boundary condition X, = 0 on the lateral
surface of a specimen, we find the true longitudinal stress X,

(KN K 1]
=2 -] == B ——1.
A ((ORIRCEY
The engineering tensile stress o, = X /k reads
AR , 1]

O'e—? ((E) —%>+([)<k —%> . (49)
Substitution of expressions (46)—(48) into the kinetic equation (43) results in the differential equations

(RN | _2dk [k 4w (RN

de [\ x) | xdt|K 3%\ \x ’

d /x 1dk[/xN\2 4u K\ 3

— - )=—=(+) - 1—(~ .

i (0=l ) (-]

These equations are equivalent to the only differential equation for the elongation ratio «,

O g

Given a loading program k = k(¢), the tensile engineering stress o, is determined by Eq. (49), where the
function k obeys Eq. (50).
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7. Simple shear

Simple shear of an incompressible medium is described by the formulas
X1 =X +kXa, x=X3, x3=2X;, (51)

where k = k(¢) is a coefficient of shear. Transformation of the reference state into the intermediate state
is treated as a superposition of simple shear and three-dimensional extension,

& =X Xy, L =X, =X, (52)

where 4; = /;(t) and k = k(¢) are functions to be found. It follows from Egs. (51) and (52) that the de-
formation gradients F and F, are given by

I k£ 0 Aok 0
F=|0 1 0, F,=({0 4 0]. (53)
0 0 1 0 0 4
The incompressibility condition for the viscoplastic flow of junctions reads
My = 1. (54)
Substituting expressions (53) into Eq. (1) and bearing in mind Eq. (54), we find that
pn ¢ 0
Fe = 0 § 2 0 ) (55)
0 0 ps
where

PL=lods, pr=lida, py=lida, ¢=khlhk—x), L=p', h=p', h=p;,

K =p; 'k — p:o. (56)
Egs. (5), (13), (53) and (55) imply that
1+ &k 0 ¢+ ¢y 0
B=| k 10|, Be=| ¢pp p 0] (57)
0 0 1 0 0 p
According to Eq. (51), the velocity gradient L and the rate-of-strain tensor D are given by
|0 1.0 i 010
L=k{0 0 0|, D= 3 1 0 0. (58)
0 00 0 00
It follows from Egs. (39) and (58) that
k
Di - . 59
7 (59)
Substituting expressions (57)—(59) into Eq. (43), we arrive at the differential equations
d 2 dk 2u 2 242 2o 1o 2 2 2N (42 2
- —2= _ ——
dt(¢ +p1) dr {‘f’[’z Zeq\/g {((f’ +p) + ¢ 3(¢” +pi 0+ p3) (@7 + )| s

d, , B 4p  dk , 5 ) L, , ) ) )
dt(Pz)* Zeq\/§ a2 [(¢ + ) 3(¢ +pi+p 03|
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d, , 4p  dk
a(P@) Zeq\/_ dtp{ (¢ +Pl +172 +P3)
dk 4 1
(¢pz) {pz 5 quﬁpz [(f/)zﬂﬁ +15) —3(¢*+pi +p§+p§)} }
eq
Simple algebra implies that these equations may be presented in the form
dp 2u 2 2 2 2
e AL 22—
dk 3\/—ZeqP1( pi — D, — P — ¢),
% 20 pa(=p +2pF — P2 +24%) (60)
dk 3\/—Zeq 1 ) 3 )
dPs 2u

e _ 2 2_ 2
dk 3f2eqp’< PRt ),

o _

a7 3as,
The initial conditions for Egs. (60) and (61) read

p(0)=1, p(0)=1, p(0)=1, ¢(0)=0. (62)

Multiplying the first equality in Egs. (60) by p,ps, the other by p;p;, and the last by p;p,, and summing
the obtained results, we find that

d(5p; +2p3 — i +29°). (61)

d
W (pip2p3) = 0.

This formula together with Egs. (56) and (62) implies that the incompressibility condition (54) is satisfied
for an arbitrary shear %.

To determine components of the Cauchy stress tensor X, we substitute expressions (57) into Eq. (42). We
focus on the shear stress ¢ = X, and the first normal difference of stresses N = X1, — X5, which are given
by

o=2u(¢pr + ¢k), N =2u(¢’ +p} — p3 + k?). (63)

Given a deformation program k = k(t), the shear stress ¢ and the first normal difference N are determined
by Egs. (63), where the functions ¢, p; and p, are governed by ordinary differential equations (60) and (61).

8. Fitting observations in tensile tests

In this section we find adjustable parameters u, ¢ and X, in the constitutive equations by matching the
experimental data in tensile tests depicted in Figs. 1-3 and analyze the effect of strain rate on the material
constants.

We begin with fitting the observations on low-density polyethylene with low molecular weight presented
in Fig. 1. Each stress—strain curve is approximated independently. To find the constants u, ¢ and X, in Eqs.
(49) and (50), we fix some intervals [0, ¢« and [0, Cyx], Where the “best-fit” parameters ¢ and

4u
35

C= (64)
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are assumed to be located, and divide these intervals into J subintervals by the points ¢ =iAu and
CY) =jAC (i,j=1,...,J-1) with Ap = ¢,,,,/J and AC = Cpay/J. For any pair {¢?, CY}, Eq. (50) is
integrated numerically by the Runge-Kutta method with the step Ak = 107>. Given a pair {¢, CY}, the
elastic modulus u is found by the least-squares method from the condition of minimum of the function

R = Z [O'exp(kn) - Jnum(kn)]27

where the sum is calculated over all experimental points &, depicted in Fig. 1, oey, is the engineering stress
measured in a tensile test, and o, is given by Eq. (49). The “best-fit” parameters ¢ and C are determined
from the condition of minimum of the function R on the set {¢,CY) (i,j =1,...,J-1)}. After finding the
“best-fit” values ¢ and CY), this procedure is repeated twice for the new intervals [p!~" ¢ *V] and
[CU=D, CU+D], to ensure an acceptable accuracy of fitting. Given u and C, the equivalent stress X, is found
from Eq. (64).

The material constants p, Xq and ¢ that minimize the discrepancies between the experimental data and
the results of numerical analysis are plotted versus the intensity of strain rate D; in Figs. 4-6 (unfilled
circles). The experimental data are approximated by the relations

p= o+ logDi, e =20+ ZilogD;:, @ = ¢, + ¢, logD;, (65)

where the adjustable parameters y,,, X, and ¢,, (m = 0, 1) are determined by the least-squares technique. The
first two relations in Egs. (65) are conventionally employed to describe the effect of strain rate on the elastic
modulus and yield stress of solid polymers. It should be noted, however, that phenomenological equations
(65) are fulfilled for a limited range of strain rates, and they cannot be extrapolated to very low strain rates.
Afterwards, the same procedure of fitting experimental data is repeated to approximate observations on
low-density polyethylene with high molecular weight (Fig. 2) and isotactic polypropylene (Fig. 3). Figs. 1-3
demonstrate excellent agreement between the experimental data and the results of numerical simulation.

400.0
I
L 1
. re——— v 2
L]
0.0 \
—3.5 log D; —-1.0

Fig. 4. The elastic modulus u MPa versus the strain rate intensity D; s~'. Symbols: treatment of observations in tensile and compressive
tests. Unfilled circles: LDPE-L. Filled circles: LDPE-H. Asterisks: iPP. Stars: LDPE-H in compressive tests. Solid lines: approximation
of the experimental data by Egs. (65). Curve 1: y, = 61.45, u; = 7.23. Curve 2: y, = 41.08, u; = 3.92. Curve 3: y, = 432.57, u; = 68.53.
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30.0
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—-3.5 log D; -1.0

Fig. 5. The equivalent stress X, MPa versus the strain rate intensity D; s~!. Symbols: treatment of observations in tensile and com-
pressive tests. Unfilled circles: LDPE-L. Filled circles: LDPE-H. Asterisks: iPP. Stars: LDPE-H in compressive tests. Solid lines:
approximation of the experimental data by Eqs. (65). Curve 1: 2y =8.11, 2} = 1.08. Curve 2: X, = 6.65, 2, = 0.88. Curve 2a:
2y =11.50, X, = 0.88. Curve 3: X, =24.01, 2, = 1.77.

0.3
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Fig. 6. The concentration of affine junctions ¢ versus the strain rate intensity D; s™'. Symbols: treatment of observations in tensile tests.
Unfilled circles: LDPE-L. Filled circles: LDPE-H. Asterisks: iPP. Solid lines: approximation of the experimental data by Egs. (65).
Curve 1: ¢y =2.56x1072, ¢, =-9.57x1073. Curve 2: ¢, =145%x10"", ¢, =—-473x 1073, Curve 3: ¢, =391 x 1072,
@, =5.95x 1073

The adjustable parameters u, X.q and ¢ found by matching observations in tensile tests on LDPE-H and
iPP are also depicted in Figs. 4-6 (filled circles and asterisks, respectively). These figures show that Egs. (65)
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correctly describe the effect of strain rate on the quantities u, ¢ and X, (the only exception is the value of ¢
for LDPE-H at the smallest cross-head speed).

According to Fig. 4, the elastic modulus u linearly grows with the logarithm of strain rate. The rate of
increase is practically independent of chemical structure of the polymers under consideration: the ratio
r, = /1y that characterizes this rate equals 0.12 for LDPE-L, 0.10 for LDPE-H and 0.16 for iPP. The
modulus g, is the largest for iPP and the smallest for LDPE-H.

To explain the dependence of the elastic modulus on strain rate, we recall that the model disregards
viscoelasticity of semicrystalline polymers. According to the theory of transient networks (Tanaka and
Edwards, 1992), the viscoelastic behavior of a network of chains reflects separation of active strands from
temporary junctions and merging of dangling strands with the network. Detachment and attachment events
occur at random times, when appropriate strands are excited by thermal fluctuations. To account (in a
simple way) for rearrangement of a polymer network under deformation with a constant strain rate, we
distinguish two groups of strands:

1. The characteristic time for rearrangement of strands belonging to the first group is substantially smaller
than the characteristic time of macro-deformation (which means that stresses totally relax when these
strands separate from their junctions, and the contribution of these strands into the strain energy density
W is negligible).

2. The characteristic time for rearrangement of strands belonging to the other group noticeably exceeds the
characteristic time for macro-deformation (which implies that detachment and attachment of these
strands can be disregarded at the experimental time scale, and they may be treated as permanent).

According to this division of strands into two groups, the number (per unit volume) of strands bridged by
permanent junctions monotonically grows with the strain rate, because an increase in the rate of macro-strain
results in a decrease in the characteristic time of deformation, and, as a consequence, a decrease in the content
of strands that rearrange under loading. Bearing in mind that the coefficient y is proportional to the con-
centration of permanent strands, we conclude that the viscoelastic phenomena may be adequately described
by assuming the elastic modulus to depend on strain rate in accord with phenomenological relation (65).

It is worth noting that the modulus p is determined by fitting the entire stress—strain curves. This means
that this modulus may substantially differ from the conventional Young modulus found by matching initial
parts (corresponding to small strains) of the stress—strain diagrams. Comparison of our data with those
reported by Lu and Sue (2002) shows that Young’s moduli of LDPE-L and LDPE-H exceed appropriate
values of u by a factor of 3.

Fig. 4 demonstrates that the elastic modulus of LDPE with low molecular weight exceeds that of LDPE-
H. At first glance, this conclusion seems paradoxical, because it contradicts the conventional standpoint in
rubber elasticity, according to which elastic moduli increase with molecular weight (Treloar, 1975). This
result may, however, be explained by the difference in the degrees of crystallinity of polyethylenes with
different molecular weights. Graham et al. (1997) reported that the growth of the average molecular weight
by twice (from 58,000 to 104,500 g/mol) implied a decrease in the degree of crystallinity by 25% (from 30%
to 23%). As the elastic modulus of crystallites substantially exceeds that of the amorphous phase, a decrease
in the degree of crystallinity induces in a pronounced reduction of moduli, in agreement with the obser-
vations depicted in Fig. 4.

Fig. 5 demonstrates that the equivalent stress 2., linearly increases with the logarithm of strain rate
following the same pattern as the elastic modulus u. The slopes of the graphs depicted in Fig. 5 are weakly
affected by chemical structure of the polymers: the ratio rs = X, /X, that characterizes these slopes equals
0.13 for LDPE-L and LDPE-H and 0.07 for iPP. It is worth noting a strong similarity between the values of
r, and ry, especially for the polyethylenes.
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It is of interest to compare the equivalent stress X, with the yield stress X, for these polymers (deter-
mined as the point of intersection between the tangent straight lines to the stress—strain diagrams at small
and large strains, respectively). Comparison of Figs. 1-3 and 5 implies that for all three polymers, the ratio
2eq/2y 1s constant and it equals approximately 0.6. Assuming X4 to be proportional to the yield stress 2y,
we conclude (based on the observations depicted in Fig. 5) that the yield stress of LDPE-L exceeds that of
LDPE-H. This result is in agreement with the experimental data reported by Graham et al. (1997), which
show that the growth of the molecular weight implies a decrease in the yield stress, and with observations
by Brooks et al. (1999a), which reveal that the growth of the degree of crystallinity (Fig. 4 demonstrates
that this parameter is higher for LDPE-L than for LDPE-H) causes an increase in the yield stress and a
decrease in the yield strain.

According to Fig. 6, the ratio ¢ of the number of strands linked to affine junctions n, to the number of
strands connected to sliding junctions ng decreases with strain rate for LDPE-L and LDPE-H and increases
for iPP.

The reduction of ¢ with strain rate for polyethylenes seems quite natural. It means that the higher the
strain rate D; is, the more intensive is breakage of van der Waals links between strands (both in the
amorphous and crystalline phase) that restrict molecular mobility of chains and prevent sliding of junc-
tions. This implies that the number of strands connected to affine junctions n, decreases with D;, in accord
with the observations depicted in Fig. 6.

Unlike the polyethylenes, the ratio ¢ for iPP increases with strain rate. The latter may be attributed to
strain rate-induced fragmentation of transverse lamellae in spherulites, which results in release of the rigid
amorphous phase, where mobility of junctions was severely restricted by lamellar cross-hatching. This
implies that both parameters n, and n; grow with D;, but an increase in n, is more pronounced than that in
ng (after release of the rigid amorphous fraction, most junctions in the previously occluded domains move
affinely), which is reflected by the growth of ¢ with strain rate.

One of the basic hypotheses in the theory of rubber elasticity (Treloar, 1975) is that junctions move
affinely with the bulk material, which implies that sliding of junctions is thought of as an anomalous
phenomenon. On the contrary, our analysis of experimental data in tensile tests (Fig. 6) reveals that
sliding of junctions with respect to their reference positions is quite typical, whereas the concentration of
affine (non-sliding) junctions is extremely small (a few percent for iPP and LDPE-L and less than 20% for
LDPE-H).

Fig. 6 demonstrates that the value of ¢ for LDPE-H substantially exceeds that for LDPE-L (approxi-
mately by a factor of 5). This result may be explained as follows. As the elastic modulus of the crystal-
line phase substantially exceeds that of the amorphous phase, the viscoplastic response of a semicrystalline
polymer (or, at least, its major part) may be associated with fine and coarse slip of lamellar blocks
(Gaucher-Miri and Seguela, 1997; Seguela, 2002). This implies that affine motion of junctions (at which
the deformation gradients for micro- and macro-deformations coincide) may be attributed to imperfect-
ness of crystallites, because regular packing of chains in lamellae results in large friction between layer-like
structures that causes a pronounced “delay” in their micro-deformation compared to the macro-
deformation of a specimen. As a consequence, the content of affine junctions ¢ in LDPE-H noticeably
exceeds that in LDPE-L, because the crystalline structures in LDPE with high molecular weight and
highly branched chains are pronouncedly less perfect (and permit slip of crystalline layers at notice-
ably lower stresses) than those in LDPE with low molecular weight. The fact that the perfectness of
crystallites in polyethylene is strongly affected by branching of chains and the concentration of entangle-
ments was recently confirmed by differential scanning calorimetry (DSC) measurements (Fan et al.,
2003).

To verify this explanation, we analyze the viscoplastic behavior of low-density polyethylene with high
molecular weight (LDPE-H) in uniaxial compressive tests.
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9. Uniaxial compression

As is well known (Drozdov, 1998), conventional constitutive models for rubber-like materials fail to
correctly describe experimental data at compression when their material constants are determined by
matching observations in uniaxial tensile tests with finite strains.

The purpose of this section is twofold: (i) to demonstrate that governing equations (49) and (50) ade-
quately describe the stress—strain curves at compression, and (ii) to verify the following three conclusions
drawn from the analysis of experimental data in tensile tests:

1. Derivation of Eq. (42) implies that the elastic modulus y is independent of pressure P. Thus, it is natural
to expect that the coefficient u found by fitting experimental data at compression is close to that deter-
mined by matching observations at uniaxial tension.

2. According to conventional approaches in the plasticity theory for crystalline (Kuroda, 2003) and porous
(Lee and Oung, 2000) materials, an increase in pressure results in the growth of the yield stress Xy of
pressure-sensitive media. It is shown in Section 8 by fitting experimental data at uniaxial tension that
the equivalent stress X, is proportional to X,. As semicrystalline polymers are pressure-sensitive mate-
rials (Monasse et al., 1997; Butler et al., 1998; Brooks et al., 1999a), we expect that the equivalent stress
at compression noticeably exceeds that at tension.

3. According to the hypothesis which associates affine junctions with lamellar blocks with negligible friction
between layer-like structures, at compression, when hydrostatic pressure severely resists slippage of the
layers with respect to one another, the concentration of affine junctions ¢ is essentially smaller than that
under tension.

To validate these conclusions, two compressive tests were performed at room temperature on LDPE-H
by using testing machine Instron-5869. The samples for the experimental analysis were injection-molded in
the form of circular plates with diameter 61.8 mm and thickness 3.1 mm. Following protocol ASTM D-695,
piles of 5 and 10 plates (the slenderness ratio of 1.0 and 2.0) were compressed with the relative rate of
motion of grips 0.1 mm/min. For the piles, this speed corresponded to compressive Hencky strain rates
én = 1.08 x 1073 and 5.38x10* s7!, respectively. Before the tests, the specimens were slightly preloaded
(the maximal compressive force at preloading was about 0.4 kN that corresponded to 1% of the maximal
force in the experiments), to exclude fluctuations of stresses driven by possible warpage of plates and to
ensure flatness of the surfaces of piles.

The maximal compressive Hencky strain was chosen to be eymax = 0.18. Our choice is explained by the
fact that the compressive load reaches 42 kN at this strain, whereas the maximal capacity of the load cell
was 50 kN. The above value of the maximal compressive strain is close to €p, = 0.13 recommended by
ASTM D-1621.

The compressive force was measured by a standard load cell. The deflection of specimens was deter-
mined from the cross-head movement. The engineering compressive stress o, was calculated as the ratio of
the compressive force to the cross-sectional area of stress-free specimens.

Experiments were performed at least three days after injection-molding of samples. Each test was
conducted on a new specimen.

The engineering compressive stress g, is plotted versus the compressive Hencky strain ey in Fig. 7.
The stress—strain diagrams demonstrate strongly non-linear dependencies of stress . on the strain ey
and show that for a given Hencky strain ey, the stress o. monotonically increases with the strain
rate.

For a uniaxial compression with a constant rate of Hencky strain é; = —k/k, the kinetic equation
(50) remains unchanged, whereas the stress—strain relation (49) for the engineering compressive stress
reads
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Fig. 7. The compressive engineering stress . MPa versus the compressive Hencky strain e in compressive tests with ég = 1.08 x 1073
s~! (unfilled circles) and é = 5.38 x 10~* s~! (filled circles). Symbols: experimental data for LDPE-H. Solid lines: results of numerical
simulation.
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The adjustable parameters u, 2. and ¢ in Eqgs. (50) and (66) are determined by using the algorithm of
matching observations described in Section 8. Fig. 7 demonstrates good correspondence between the
experimental data and the results of numerical analysis.

The material constants u, 2.4 and ¢ that ensure the best-fit of observations are plotted versus the in-
tensity of strain rate D; = éy in Figs. 4-6. According to Fig. 4, the values of the elastic modulus u found by
matching the stress—strain curves at compression (stars) are in excellent agreement with curve 2 that ap-
proximates the dependence of the elastic modulus on strain rate under tension.

Fig. 5 demonstrates that the equivalent stress X at compression is higher (by twice) than that at tension,
but it follows approximately the same dependence on strain rate (as we have only two experimental points
at compression, the function X, (D;) is approximated by the straight line (65) with the same slope as that for
uniaxial tension).

For both stress—strain curves depicted in Fig. 7, it is found that the “best-fit” value of ¢ equals zero. This
means that application of hydrostatic pressure results in so pronounced increase in friction between layer-
like structures in crystallites that affine junctions totally disappear.

These conclusions confirm the above hypotheses and demonstrate that the adjustable parameters of the
model are affected by strain rate and pressure in a physically plausible way.

10. Numerical simulation of simple shear

In the approximation of the experimental data in tensile tests, a noticeable difference has been revealed
between the values of ¢ for low-density polyethylenes with low and high molecular weights. The aim of this
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section is to show that this quantitative difference implies a qualitative difference in the mechanical re-
sponses of LDPE-L and LDPE-H. For this purpose, we analyze numerically the effect of shear rate on the
shear stress and the first normal difference of stresses at simple shear of an incompressible medium with
finite strains.

Eqgs. (60) and (61) with initial conditions (62) are integrated numerically by the Runge-Kutta method
with the step Ak = 10~* in the interval between k = 0 and k = 1. Five shear rates k=0.01,0.1, 1.0, 10.0 and
100.0 s~! are employed in the numerical simulation. The shear stress ¢ and the first normal difference N are
determined by Eqs. (63). The effect of strain rate on the adjustable parameters u, X.q and ¢ is described by
Egs. (65), where the strain rate intensity D; is given by Eq. (59). We use the coefficients y,,, 2, and ¢,
(m =0, 1) in Egs. (65) found by fitting the experimental data for LDPE-L and LDPE-H depicted in Figs. 1
and 2. The shear stress ¢ and the first normal difference of stresses N are plotted versus the coefficient
of shear & in Figs. 8 and 9 for LDPE-H and in Figs. 10 and 11 for LDPE-L, respectively.

Fig. 8 shows that at all strain rates under consideration, the shear stress ¢ rapidly increases with & in the
initial interval of deformations (k < 0.2), and grows linearly with k£ afterwards. Given k, the shear stress
monotonically increases with the strain rate, but this growth is rather modest: when the shear rate increases
by four orders of magnitude, the shear stress grows by about 43%. Fig. 9 demonstrates that given a strain
rate k, the first normal difference of stresses N grows as a quadratic function of k. For a fixed &, the first
normal difference weakly increases with the strain rate: by about 34% when k grows from 0.01 to 100 s~'.
After an initial period of deformations, when & > 0.2, the first normal difference of stresses N is propor-
tional to the square of shear stress g, in agreement with the Lodge—Meissner rule (Lodge and Meissner,
1972). According to Figs. 8 and 9, the rate-dependent response of LDPE with high molecular weight is
quite typical of rubbery polymers and polymer melts.

Fig. 10 shows that given a shear rate k, the shear stress ¢ monotonically increases with the coefficient of
shear (rather strongly at the initial period of deformations, and linearly afterwards). Unlike LDPE-H, the
slope of the curve (k) for LDPE-L within the region of steady viscoplastic flow strongly depends on the
strain rate and monotonically decreases with k. This leads to intersection of the stress—strain curves at

30.0

0.0 | | \
0.0 k 1.0

Fig. 8. The shear stress ¢ MPa versus the coefficient of shear k in shear tests with the strain rates k& = 0.01, 0.1, 1.0, 10.0 and 100.0 s~
from bottom to top, respectively. Solid lines: results of numerical simulation for LDPE-H.
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Fig. 9. The first normal difference N MPa versus the coefficient of shear & in shear tests with the strain rates k=0.01,0.1, 1.0, 10.0 and
100.0 s~! from bottom to top, respectively. Solid lines: results of numerical simulation for LDPE-H.
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0.0 k 1.0

Fig. 10. The shear stress ¢ MPa versus the coefficient of shear & in shear tests with the strain rates k=0.01,0.1, 1.0, 10.0 and 100.0 s~
from bottom to top, respectively. Solid lines: results of numerical simulation for LDPE-L.

relatively large coefficients of shear. Fig. 11 demonstrates a rather sophisticated dependence of the first
normal difference N on the coefficient of shear k. The function N (k) reveals a pronounced shoulder near the
point k& = 0.2, which substantially grows with the shear rate. In the interval between £ = 0 and £ = 0.4, an
increase in the shear rate results in the growth of the first normal difference of stresses. The stress—strain
curves corresponding to different values of & intersect in the vicinity of the point k£ = 0.4, and at higher
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Fig. 11. The first normal difference N MPa versus the coefficient of shear & in shear tests with the strain rates k=0.01,0.1, 1.0, 10.0 and
100.0 s~! from bottom to top, respectively. Solid lines: results of numerical simulation for LDPE-L.

strains, an increase in the shear rate leads to a decrease in N. Although the Lodge—Meissner law is satisfied
for a steady viscoplastic flow, the area of its applicability is noticeably shifted to relatively large strains.
The dependencies a(k) and N(k) similar to those depicted in Figs. 10 and 11 have been previously
observed in polymer solutions (Oberhauser et al., 1998; Osaki et al., 2000) and particle gels (Whittle and
Dickinson, 1997). The results of numerical simulation demonstrate that semicrystalline polymers with
relatively low molecular weight may also reveal such an ‘“‘unusual” mechanical behavior at high shear rates.

11. Concluding remarks

Three series of tensile tests have been performed at ambient temperature on injection-molded isotactic
polypropylene and two commercial grades of low-density polyethylene with low and high molecular
weights. Experiments have been carried out at finite strains (up to 50%) with cross-head speeds ranging
from 3 to 250 mm/min that cover the entire region of strain rates used in quasi-static tensile tests.

A constitutive model has been derived for the isothermal viscoplastic behavior of semicrystalline
polymers at finite strains. A polymer is treated as an equivalent network of chains bridged by permanent
junctions. Two types of junctions are introduced: (i) affine whose micro-deformation coincides with macro-
deformation of a specimen, and (ii) sliding that slip with respect to their reference positions under loading.
Sliding of junctions reflects (i) sliding of entanglements with respect to chains in the amorphous phase, (ii)
slippage of tie chains along lamellar surfaces, and (iii) fine and coarse slip of lamellar blocks. The rate of
sliding of junctions is proportional to the intensity of macro-stresses.

Constitutive equations for an equivalent non-affine network of chains are developed by using the laws of
thermodynamics. The governing equations consist of stress—strain relation (35) and a non-linear differential
equation (40) for the evolution of the left Cauchy—Green tensor for elastic deformation. For a Gaussian
network of flexible chains, these relations involve three material parameters: the elastic modulus u, the
equivalent stress X.q and the concentration of affine junctions ¢.
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The constitutive equations are simplified for uniaxial tension and simple shear of an incompressible
medium with finite strains. The material constants are found by fitting the observations in tensile tests with
various strain rates. Fair agreement is demonstrated between the experimental data and the results of
numerical simulation.

The following conclusions are drawn:

1. The modulus p is independent of pressure, and it monotonically increases with the intensity of strain rate
D;. This growth may be explained by the material viscoelasticity. The slopes of the graphs p(D;) are sim-
ilar for the polyolefins under consideration. The modulus of LDPE with low molecular weight exceeds
that of LDPE with high molecular weight, which is associated with a smaller degree of crystallinity in
LDPE-H.

2. The equivalent stress 2., increases with strain rate in the same way as the yield stress X, determined by
conventional methods. The rate of increase is the highest for polyethylenes (and it is independent of their
molecular weight) and the lowest for polypropylene. The equivalent stress at compression noticeably ex-
ceeds that at tension.

3. The ratio ¢ decreases with strain rate for polyethylenes (due to the rate-induced breakage of links be-
tween chains which prevented sliding of junctions in a stress-free medium) and increases for iPP (which
is attributed to fragmentation of tangential lamellae and release of the rigid amorphous fraction). The
content of affine junctions in LDPE with high molecular weight noticeably exceeds that in LDPE with
low molecular weight (this reflects the difference in the perfectness of crystals of the two grades of poly-
ethylene). The concentration of affine junctions at tension is substantially higher than that at compres-
sion (because hydrostatic pressure increases friction between layer-like structures in crystallites and
prevents their slippage with respect to one another).

4. The quantitative difference between the values of ¢ for LDPE-L and LDPE-H results in a qualitative
difference in their responses at simple shear. The behavior of LDPE with high molecular weight is similar
to that of elastomers and polymer melts (monotonic dependencies of the shear stress and the first normal
difference of stresses on the coefficient of shear and the rate of shear). On the contrary, LDPE with low
molecular weight reveals a pattern typical of polymer solutions and suspensions of particles (a non-
monotonic dependence of the first normal difference on the coefficient of shear at high shear rates).
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