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Abstract

Three series of uniaxial tensile tests with constant strain rates are performed at room temperature on isotactic

polypropylene and two commercial grades of low-density polyethylene with different molecular weights. Constitutive

equations are derived for the viscoplastic behavior of semicrystalline polymers at finite strains. A polymer is treated as

an equivalent network of strands bridged by permanent junctions. Two types of junctions are introduced: affine whose

micro-deformation coincides with the macro-deformation of a polymer, and non-affine that slide with respect to their

reference positions. The elastic response of the network is attributed to elongation of strands, whereas its viscoplastic

behavior is associated with sliding of junctions. The rate of sliding is proportional to the average stress in strands linked

to non-affine junctions. Stress–strain relations in finite viscoplasticity of semicrystalline polymers are developed by using

the laws of thermodynamics. The constitutive equations are applied to the analysis of uniaxial tension, uniaxial

compression and simple shear of an incompressible medium. These relations involve three adjustable parameters that

are found by fitting the experimental data. Fair agreement is demonstrated between the observations and the results of

numerical simulation. It is revealed that the viscoplastic response of low-density polyethylene in simple shear is strongly

affected by its molecular weight.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is concerned with the viscoplastic response of semicrystalline polymers at isothermal de-

formations with finite strains. The experimental part of the study focuses on the rate-dependent behavior of

isotactic polypropylene (iPP) and two grades of low-density polyethylene (LDPE) with different molecular

weights. The choice of iPP and LDPE for the investigation is explained by (i) their numerous industrial
* Corresponding author. Tel.: +1-304-293-2111; fax: +1-304-293-4139.

E-mail address: aleksey.drozdov@mail.wvu.edu (A.D. Drozdov).

0020-7683/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0020-7683(03)00414-1

mail to: aleksey.drozdov@mail.wvu.edu


6218 A.D. Drozdov, R.K. Gupta / International Journal of Solids and Structures 40 (2003) 6217–6243
applications (oriented films for packaging, reinforcing fibres, non-woven fabrics, pipes, wire coatings, fuel

tanks, etc.), and (ii) variety of crystalline morphologies (ranging from monoclinic a spherulites in iPP to

orthorhombic structures in LDPE) and molecular architectures in the amorphous phase of these polymers

(ranging from short side branches to highly branched chains) that noticeably affect their mechanical and
physical properties.

Isotactic polypropylene is a semicrystalline polymer containing three crystallographic forms: monoclinic

a crystallites, hexagonal b structures, orthorhombic c polymorphs, and ‘‘smectic’’ mesophase (Iijima and

Strobl, 2000). At rapid cooling of the melt (at the stage of injection molding), a crystallites and smectic

mesophase are mainly developed, whereas b and c polymorphs are observed as minority components

(Kalay and Bevis, 1997). A unique feature of the crystalline morphology of iPP is the lamellar cross-

hatching: development of transverse lamellae oriented in the direction perpendicular to the direction of

radial lamellae (Iijima and Strobl, 2000; Maiti et al., 2000). The characteristic size of spherulites in injec-
tion-molded specimens is estimated as 100–200 lm (Kalay and Bevis, 1997; Coulon et al., 1998). These

spherulites consist of crystalline lamellae with thickness of 10–20 nm (Coulon et al., 1998; Maiti et al.,

2000).

Low-density polyethylene is a semicrystalline polymer with orthorhombic crystalline structure. Linear

chains in LDPE contain a large number of side branches (both short and long) that prevent macromole-

cules from packing closely in crystallites and result in a wide distribution of sizes of spherulites. The

average radius of spherulites equals 3–12 lm (Graham et al., 1997). The spherulites are formed by

lamellae stacks with lamellar thicknesses ranging from 8 to 12 nm (Matsuda et al., 2001). The average
size of lamellae and their curvature, as well as the type of their organization into spherulites are strongly

affected by crystallization conditions, molecular weight and the degree of branching of chains (Guichon

et al., 2003).

The amorphous phase of iPP and LDPE is located (i) between spherulites, (ii) inside spherulites in

‘‘liquid pockets’’ between lamellar stacks (Verma et al., 1996), and (iii) between lamellae in lamellar stacks.

It consists of (i) relatively mobile chains between spherulites and in liquid pockets, and (ii) severely re-

stricted chains (the so-called rigid amorphous fraction: part of the amorphous phase whose molecular

mobility is substantially suppressed by surrounding crystallites) (Verma et al., 1996).
In the past five years, viscoplasticity and yielding of iPP have been investigated by Coulon et al. (1998),

Seguela et al. (1999) and Nitta and Takayanagi (1999, 2000). Viscoplasticity of polyethylene with relation to

its crystalline morphology and topology of chains have been studied by Gaucher-Miri and Seguela (1997),

Graham et al. (1997), Brooks et al. (1998, 1999a,b), Hiss et al. (1999), Hobeika et al. (2000) and Seguela

(2002).

Deformation of a semicrystalline polymer at relatively small, but finite strains induces inter-lamellar

separation, rotation and twist of lamellae, fine (homogeneous shear of layer-like crystalline structures) and

coarse (heterogeneous inter-lamellar sliding) slip of lamellar blocks and their fragmentation (Gaucher-Miri
and Seguela, 1997; Hiss et al., 1999), chain slip through the crystals, sliding and breakage of tie chains

(Nitta and Takayanagi, 1999), detachment of chain folds and loops from the interfaces of crystal blocks

(Gaucher-Miri and Seguela, 1997), and activation of the rigid amorphous fraction. At very large strains,

disintegration of spherulites results in large-scale separation of lamellar blocks and transformation of

spherulites into a fibrillar texture (Gaucher-Miri and Seguela, 1997; Nitta and Takayanagi, 2000), cavi-

tation and stress-induced crystallization of chains in the amorphous phase.

To account for these morphological transformations in a constitutive model with a relatively small

number of adjustable parameters, we apply a method of homogenization. According to it, a sophisticated
micro-structure of a semicrystalline polymer is replaced by a single phase ‘‘whose internal micro-mechanical

state is tracked as a function of applied deformation’’ (Bergstr€oom et al., 2002). As the equivalent phase, a

network of macromolecules is conventionally chosen (Sweeney et al., 1997, 1999; Bergstr€oom et al., 2002) for

the following reasons:
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1. The time-dependent response of solid polymers is associated with rearrangement of chains in amorphous

regions.

2. The viscoplastic flow in semicrystalline polymers is ‘‘initiated in the amorphous phase before transition-

ing into the crystalline phase’’ (Meyer and Pruitt, 2001).
3. Sliding of tie chains along and their detachment from lamellae play the key role in the yielding pheno-

menon (Nitta and Takayanagi, 1999).

To develop stress–strain relations in an explicit form, a network is treated as incompressible. Obser-

vations show that isotactic polypropylene and low-density polyethylene are weakly compressible polymers

(Powers and Caddell, 1972). However, their compressibility is disregarded in the present study.

A semicrystalline polymer is modelled as a network of chains bridged by junctions (entanglements,

physical cross-links on the surfaces of crystallites and lamellar blocks). All junctions are treated as per-
manent (chains cannot separate from their junctions during the experimental time scale), which implies that

the viscoelastic effects associated with rearrangement of chains (Drozdov and Christiansen, 2002) are ex-

cluded from the consideration.

To describe the viscoplastic phenomena, the network is assumed to deform non-affinely: junctions can

slide with respect to their reference positions under loading. Sliding of junctions in an equivalent network

reflects (i) sliding of entanglements with respect to chains in the amorphous phase, (ii) slippage of tie chains

along lamellar surfaces, and (iii) fine and coarse slip of crystalline lamellae. Unlike previous works in

rheology of non-affine networks (Glatting et al., 1994; Wedgewood and Geurts, 1995; Sun et al., 2000),
two types of junctions are introduced: affine (whose ability to slide is restricted by nearby chains in

the amorphous phase and lamellar blocks), and non-affine (that can freely slide with respect to sur-

rounding macromolecules). The novelty of the present approach compared to the previous study (Drozdov

and Christiansen, 2003) is that we assume the rate-of-strain tensor for viscoplastic deformations to

be proportional to the deviatoric component of the Cauchy stress tensor (not to the rate-of-strain tensor

for macro-deformations). This allows a non-linear kinetic equation to be derived for the left Cauchy–Green

tensor for elastic deformations similar to the differential equation for the evolution of the orientation

tensor in the pom–pom model for branched polymer melts (Bishko et al., 1997; McLeish and Larson,
1998).

The objective of this work is threefold:

1. To report experimental data in uniaxial tensile tests with finite strains on isotactic polypropylene and two

grades of low-density polyethylene with different molecular weights.

2. To develop constitutive equations for the viscoplastic behavior of a semicrystalline polymer and to de-

termine adjustable parameters in the stress–strain relations by fitting the observations.

3. To demonstrate that the crystalline morphology and the molecular weight of semicrystalline polymers
substantially affect their mechanical response.

The exposition is organized as follows. Experimental data in uniaxial tensile tests are reported in Section

2. Kinematic relations for non-affine deformation of an equivalent network are developed in Section 3. A

kinetic equation for the rate-of-strain tensor for sliding of junctions is introduced in Section 4. Constitutive

equations for a semicrystalline polymer at isothermal deformation with finite strains are derived in Section

5 by using the laws of thermodynamics. The stress–strain relations are simplified for uniaxial tension in

Section 6 and for simple shear in Section 7. Adjustable parameters in the governing equations are deter-
mined in Section 8 by fitting observations in tensile tests. The dependencies of the material constants on the

molecular weight and pressure are further investigated in Section 9 by matching experimental data in

compression tests. Section 10 deals with numerical simulation of the viscoplastic behavior of LDPE in

simple shear. Some concluding remarks are formulated in Section 11.
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2. Experimental procedure

Isotactic polypropylene (Novolen 1100L) was supplied by BASF (Targor), low-density polyethylene

(Lupolen 2410T) was donated by BASF (Basell), and low-density polyethylene (Huntsman PE 1020) was
purchased from GE Plastics. Granules were dried at the temperature T ¼ 100 �C for 12 h before molding

in injection-molding machine Battenfeld 1000/315 CDC (Battenfeld). ASTM dumbbell specimens were

injection-molded with length 148 mm, width 9.8 mm and thickness 3.8 mm.

The average molecular weights of two commercial grades of LDPE are not provided by the suppliers.

Melt-flow index (MFI) of Lupolen 2410T equals 36 g/10 min (test method ISO 1133), whereas that of

Huntsman PE 1020 equals 2 g/10 min (test method D 1238). As the melt-flow index is inversely propor-

tional to M3:4, where M is the weight-average molecular weight, Lupolen 2410T is treated as low-density

polyethylene with low molecular weight, while Huntsman PE 1020 is referred to as low-density polyethylene
with high molecular weight. For the sake of brevity, these polymers are abbreviated as LDPE-L and LDPE-

H, respectively.

Uniaxial tensile tests were performed at room temperature on testing machines Instron-5568 (iPP and

LDPE-L) and Instron-5869 (LDPE-H) equipped with electro-mechanical sensors for the control of lon-

gitudinal strains in the active zone of samples (with a distance of 50 mm between clips). The tensile force

was measured by a standard load cell. The engineering stress re was determined as the ratio of the axial

force to the cross-sectional area of stress-free specimens.

Mechanical tests were carried out on samples not subjected to thermal pre-treatment. To minimize the
effect of physical aging, experiments were performed at least three days after injection-molding. Each test

was conducted on a new specimen. Necking of samples was not observed in experiments.

In the series of tests on LDPE-L, specimens were loaded with constant cross-head speeds of 5, 10, 25, 50,

100, 150 and 200 mm/min, which corresponded to the Hencky strain rates _��H ¼ 9:80� 10�4, 2.03 · 10�3,

5.16 · 10�3, 9.92 · 10�3, 2.07 · 10�2, 3.03 · 10�2 and 4.00 · 10�2 s�1, respectively, up to the maximal Hencky

strain �Hmax ¼ 0:3.
Fig. 1. The engineering stress re MPa versus the elongation ratio k in tensile tests with the cross-head speeds 5, 10, 25, 50, 100, 150 and

200 mm/min from bottom to top, respectively. Circles: experimental data for LDPE-L. Solid lines: results of numerical simulation.



Fig. 2. The engineering stress re MPa versus the elongation ratio k in tensile tests with the cross-head speeds 3, 13, 25, 127 and 254 mm/

min. Circles: experimental data for LDPE-H. Solid lines: results of numerical simulation.

Fig. 3. The engineering stress re MPa versus the elongation ratio k in tensile tests with the cross-head speeds 5, 10, 30, 50 and 100 mm/

min from bottom to top, respectively. Circles: experimental data for iPP. Solid lines: results of numerical simulation.
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In the series of tests on LDPE-H, specimens were loaded with constant cross-head speeds of 3, 13, 25,
127 and 254 mm/min (0.1, 0.5, 1.0, 5.0 and 10 in/min), which corresponded to _��H ¼ 6:48� 10�4, 2.03 · 10�3,

3.60 · 10�3, 1.98 · 10�2 and 3.97 · 10�2 s�1, respectively, up to the maximal Hencky strain �Hmax ¼ 0:4.
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In the series of tests on iPP, specimens were loaded with constant cross-head speeds of 5, 10, 30, 50 and

100 mm/min, which corresponded to _��H ¼ 9:80� 10�4, 2.03 · 10�3, 7.16 · 10�3, 9.92 · 10�3 and 2.07 · 10�2,

respectively, up to the maximal Hencky strain �Hmax ¼ 0:12. This relatively small value of the maximal

strain was chosen to avoid necking of specimens at the cross-head speeds of 50 and 100 mm/min.
The chosen strain rates ensured nearly isothermal experimental conditions, on the one hand, and they

allowed the viscoelastic effects to be disregarded, on the other.

The engineering stress re is plotted versus the elongation ratio k in Figs. 1–3. The stress–strain diagrams

show that (i) the dependence of stress re on the engineering strain �e ¼ k � 1 is strongly non-linear even at

relatively small strains, and (ii) given an elongation ratio k, the stress re monotonically increases with the

strain rate.

For LDPE-L, the engineering stress strongly increases with k in the initial region of deformations,

reaches its ultimate value in the vicinity of the point k � 1:15, and weakly decreases afterwards. For LDPE-
H, re monotonically increases with k in the entire region of deformations under consideration. For iPP, the

stress re increases with k in the initial region of deformations and remains practically constant when k
exceeds 1.09. It is worth noting that Figs. 1–3 present the dependence of the engineering stress re on the

elongation ratio k. The true stress estimated (based on the incompressibility condition) as rt ¼ rek
monotonically grows with k for all three polymers.

Our aim now is to develop constitutive equations that correctly describe the experimental data depicted

in Figs. 1–3.
3. Kinematics of sliding

A semicrystalline polymer is treated as an incompressible permanent network of strands bridged by

junctions (entanglements between chains in the amorphous regions, physical cross-links at the surfaces of

crystallites and lamellar blocks). Macro-deformation of the network induces sliding (non-affine motion) of

some part of the junctions with respect to their reference positions. In this section, kinematic relations are

developed for the left and right Cauchy–Green tensors for elastic deformation of a non-affine network.
With reference to the conventional concepts in non-linear mechanics (Haupt, 2000), three configurations

of an arbitrary element are introduced: (i) the reference configuration describes the position of this element

before application of external loads, (ii) the actual configuration characterizes its position in the deformed

state, and (iii) the intermediate configuration determines the current position of junctions driven by their

sliding. Transformation of the reference state of a network into its actual state at time tP 0 is determined

by the deformation gradient FðtÞ. Transformation of the reference state into the intermediate state is

characterized by the deformation gradient FpðtÞ, where the subscript index ‘‘p’’ indicates that non-affine

motion of junctions is associated with their viscoplastic flow. Transformation of the intermediate state into
the deformed state is described by the deformation gradient FeðtÞ, where the subscript index ‘‘e’’ means that

Fe reflects elastic deformation of the network (in the sense that its mechanical energy is as a function of Fe).

The tensors FðtÞ, FeðtÞ and FpðtÞ are connected by the multiplicative decomposition formula (Lee, 1969)
FðtÞ ¼ FeðtÞ � FpðtÞ; ð1Þ
where the dot stands for the standard dot product of tensors (Drozdov, 1998). Eq. (1) was proposed for

non-affine networks in Buckley and Jones (1995), where Fe and Fp were identified as the ‘‘network stretch’’

tensor and the ‘‘slippage stretch’’ tensor.

The derivatives of the tensor FðtÞ and its inverse F�1ðtÞ with respect to time t read
dF

dt
ðtÞ ¼ LðtÞ � FðtÞ; dF�1

dt
ðtÞ ¼ �F�1ðtÞ � LðtÞ; ð2Þ
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where LðtÞ is the velocity gradient in the actual state. The derivatives of the tensors FpðtÞ and F�1
p ðtÞ are

given by the formulas similar to Eqs. (2),
dFp

dt
ðtÞ ¼ LpðtÞ � FpðtÞ;

dF�1
p

dt
ðtÞ ¼ �F�1

p ðtÞ � LpðtÞ; ð3Þ
where LpðtÞ is the velocity gradient for sliding of junctions. It follows from Eq. (1) that
dFe

dt
ðtÞ ¼ d

dt
½FðtÞ � F�1

p ðtÞ	 ¼ dF

dt
ðtÞ � F�1

p ðtÞ þ FðtÞ �
dF�1

p

dt
ðtÞ:
Substitution of Eqs. (2) and (3) into this equality results in
dFe

dt
ðtÞ ¼ LðtÞ � FeðtÞ � FeðtÞ � LpðtÞ: ð4Þ
The left and right Cauchy–Green tensors for elastic deformation are given by
BeðtÞ ¼ FeðtÞ � FT
e ðtÞ; CeðtÞ ¼ FT

e ðtÞ � FeðtÞ; ð5Þ
where T stands for transpose. We differentiate the first equality in Eqs. (5) with respect to time, use Eq. (4)

and find that
dBe

dt
ðtÞ ¼ LðtÞ � BeðtÞ þ BeðtÞ � LTðtÞ � 2FeðtÞ �DpðtÞ � FT

e ðtÞ; ð6Þ
where
DpðtÞ ¼
1

2
½LpðtÞ þ LT

p ðtÞ	
is the rate-of-strain tensor for sliding of junctions. Similarly, differentiation of the other equality in Eqs. (5)
implies that
dCe

dt
ðtÞ ¼ 2FTe ðtÞ �DðtÞ � FeðtÞ � LT

p ðtÞ � CeðtÞ � CeðtÞ � LpðtÞ; ð7Þ
where
DðtÞ ¼ 1

2
½LðtÞ þ LTðtÞ	
is the rate-of-strain tensor for macro-deformation. Bearing in mind that for any smooth tensor function

WðtÞ,
dW�1

dt
ðtÞ ¼ �W�1ðtÞ � dW

dt
ðtÞ �W�1ðtÞ;
we find from Eq. (7) that
dC�1
e

dt
ðtÞ ¼ �2F�1

e ðtÞ �DðtÞ � ½F�1
e ðtÞ	T þ C�1

e ðtÞ � LT
p ðtÞ þ LpðtÞ � C�1

e ðtÞ: ð8Þ
The first principal invariant of the right Cauchy–Green tensor CeðtÞ reads
Je1ðtÞ ¼ I1ðCeðtÞÞ ¼ CeðtÞ : I;
where I1 denotes the first invariant of a tensor, I is the unit tensor and the colon stands for convolution.

Differentiating this equality with respect to time and using Eqs. (5) and (7), we obtain
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dJe1
dt

ðtÞ ¼ 2½BeðtÞ : DðtÞ � CeðtÞ : DpðtÞ	: ð9Þ
For an incompressible medium, the second principal invariant of the right Cauchy–Green tensor CeðtÞ is

given by
Je2ðtÞ ¼ I1ðC�1
e ðtÞÞ ¼ C�1

e ðtÞ : I:
It follows from this equality and Eqs. (5) and (8) that
dJe2
dt

ðtÞ ¼ �2½B�1
e ðtÞ : DðtÞ � C�1

e ðtÞ : DpðtÞ	: ð10Þ
Eqs. (9) and (10) imply that the derivative of an arbitrary smooth function UðJe1; Je2Þ of the first two

principal invariants of the right Cauchy–Green tensor for elastic deformation CeðtÞ with respect to time t is
determined as
dU
dt

ðJe1ðtÞ; Je2ðtÞÞ ¼ 2f½U1ðtÞBeðtÞ � U2ðtÞB�1
e ðtÞ	 : DðtÞ � ½U1ðtÞCeðtÞ � U2ðtÞC�1

e ðtÞ	 : DpðtÞg; ð11Þ
where
UmðtÞ ¼
oU
oJem

ðJe1ðtÞ; Je2ðtÞÞ ðm ¼ 1; 2Þ: ð12Þ
By analogy with Eqs. (5), we introduce the left and right Cauchy–Green tensors for transition from the

reference state to the deformed state at time tP 0,
BðtÞ ¼ FðtÞ � FTðtÞ; CðtÞ ¼ FTðtÞ � FðtÞ: ð13Þ

For an incompressible medium, the first two principal invariants of these tensors read
J1ðtÞ ¼ I1ðCðtÞÞ ¼ CðtÞ : I; J2ðtÞ ¼ I1ðC�1ðtÞÞ ¼ C�1ðtÞ : I:

The derivatives of the functions J1ðtÞ and J2ðtÞ with respect to time are determined by Eqs. (9) and (10),

where the rate-of-stress tensor Dp is omitted and the tensor Be is replaced by B,
dJ1
dt

ðtÞ ¼ 2BðtÞ : DðtÞ; dJ2
dt

ðtÞ ¼ �2B�1
e ðtÞ : DðtÞ: ð14Þ
It follows from Eqs. (14) that the derivative of an arbitrary smooth function /ðJ1; J2Þ of the first two

principal invariants of the right Cauchy–Green tensor CðtÞ with respect to time t is given by
d/
dt

ðJ1ðtÞ; J2ðtÞÞ ¼ 2½/1ðtÞBðtÞ � /2ðtÞB�1ðtÞ	 : DðtÞ; ð15Þ
where the functions /1ðtÞ and /2ðtÞ are determined by the formulas similar to Eqs. (12),
/mðtÞ ¼
o/
oJm

ðJ1ðtÞ; J2ðtÞÞ ðm ¼ 1; 2Þ: ð16Þ
Our aim now is to establish connections between the rate-of-strain tensor for sliding of junctions DpðtÞ
and the Cauchy stress tensor for macro-deformation RðtÞ.
4. Kinetics of sliding

According to the conventional approach in rational mechanics (Truesdell, 1977), the rate-of-strain
tensor Dp for viscoplastic deformation for an incompressible medium is an isotropic tensor function of the
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deviatoric component R0 of the stress tensor R. Confining ourselves to linear relationships between the two

tensors, we write
DpðtÞ ¼ aðtÞR0ðtÞ; ð17Þ
where a is a scalar material function. A substantial shortcoming of Eq. (17) is that it does not satisfy the

objectivity condition (Haupt, 2000). To prove this assertion, we superpose rigid rotation in the actual state,
r0ðtÞ ¼ OðtÞ � rðtÞ; ð18Þ
where rðtÞ is the radius vector of an arbitrary point in the deformed state at time t, r0ðtÞ is its radius vector in
the transformed state, and OðtÞ is an orthogonal tensor. Under transformation (18), the objective tensor

R0 is replaced by the tensor
R00ðtÞ ¼ OðtÞ � R0ðtÞ �OTðtÞ; ð19Þ
whereas the tensor DpðtÞ remains unchanged, because this tensor is uniquely determined by the radius

vector in the intermediate configuration, which is not affected by rigid rotations in the deformed state.
To develop an analog of Eq. (17) that satisfies the objectivity condition, we introduce the left polar

decomposition of the deformation gradient for transition from the intermediate state to the deformed state,
FeðtÞ ¼ VeðtÞ � ReðtÞ; ð20Þ

where ReðtÞ is an orthogonal rotation tensor, and VeðtÞ is a symmetric stretch tensor,
RT
e ðtÞ ¼ R�1

e ðtÞ; VT
e ðtÞ ¼ VeðtÞ:
Substitution of expression (20) into the first equality in Eqs. (5) implies that
V2
eðtÞ ¼ BeðtÞ: ð21Þ
Under rigid rotation in the deformed state, the elastic deformation gradient Fe is replaced by the tensor
F0
eðtÞ ¼ OðtÞ � FeðtÞ: ð22Þ
It follows from Eqs. (5) and (22) that the left elastic Cauchy–Green tensor BeðtÞ is transformed as
B0
eðtÞ ¼ OðtÞ � BeðtÞ �OTðtÞ: ð23Þ
According to Eqs. (21) and (23), the elastic stretch tensor Ve is replaced by the tensor
V0
eðtÞ ¼ OðtÞ � VeðtÞ �OTðtÞ: ð24Þ
Substitution of expressions (22) and (24) into Eq. (20) results in the formula for transformation of the

rotation tensor,
R0
eðtÞ ¼ OðtÞ � ReðtÞ: ð25Þ
The deviatoric component of the Cauchy stress tensor R0 is split into the sum of deviatoric components

of two stress tensors,
R0ðtÞ ¼ R0
sðtÞ þ R0

aðtÞ; ð26Þ

where R0

s characterizes the extra stresses in strands linked to sliding junctions and R0
a describes the extra

stresses in strands with non-sliding (affine) junctions. The tensors R0
s and R0

a are assumed to transform

according to the rule (19) under rigid rotation (18) in the actual state.

The following analog of Eq. (17) is introduced:
DpðtÞ ¼ aðtÞRT
e ðtÞ � R0

sðtÞ � ReðtÞ; ð27Þ
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which implies that the rate of sliding of junctions is proportional to the stress arising due to stretching of

chains linked to these junctions.

At small strains (when the tensor Re may be replaced by the unit tensor I), Eq. (27) coincides with kinetic

equation (17), provided that all junctions are non-affine, R0
a ¼ 0. Substituting Eqs. (19) and (25) into Eq.

(27), we find that this equation is objective (independent of rigid rotations in the deformed state). Finally,

Eqs. (27) together with the orthogonality property of the rotation tensor Re implies that for an incom-

pressible network, the flow of junctions is volume preserving,
I1ðDpðtÞÞ ¼ 0: ð28Þ

It follows from Eqs. (6), (20) and (27) that
dBe

dt
ðtÞ ¼ LðtÞ � BeðtÞ þ BeðtÞ � LTðtÞ � 2aðtÞVeðtÞ � R0

sðtÞ � VeðtÞ: ð29Þ
Eqs. (5), (20), (21) and (27) imply that
CeðtÞ : DpðtÞ ¼ I1ðFT
e ðtÞ � FeðtÞ �DpðtÞÞ ¼ aðtÞI1ðReðtÞ � FT

e ðtÞ � FeðtÞ � RT
e ðtÞ � R0

sðtÞÞ
¼ aðtÞI1ðV2

eðtÞ � R0
sðtÞÞ ¼ aðtÞBeðtÞ : R0

sðtÞ:
By analogy with this equality, we find that
C�1
e ðtÞ : DpðtÞ ¼ aðtÞB�1

e ðtÞ : R0
sðtÞ:
Substitution of these expressions into Eq. (11) results in
dU
dt

ðJe1ðtÞ; Je2ðtÞÞ ¼ 2½U1ðtÞBeðtÞ � U2ðtÞB�1
e ðtÞ	 : ½DðtÞ � aðtÞR0

sðtÞ	:
Bearing in mind that for any symmetric tensors, A1 and A2 such that I1ðA2Þ ¼ 0, we have
A1 : A2 ¼ A0
1 : A2;
where the prime stands for the deviatoric component of a tensor, and using the incompressibility condition

I1ðDÞ ¼ 0, we arrive at the formula
dU
dt

ðJe1ðtÞ; Je2ðtÞÞ ¼ 2½U1ðtÞBeðtÞ � U2ðtÞB�1
e ðtÞ	0 : ½DðtÞ � aðtÞR0

sðtÞ	: ð30Þ
Our aim now is to apply Eqs. (15) and (30) in order to derive constitutive equations for an equivalent

network of chains by using the laws of thermodynamics.
5. Constitutive equations

Denote by na the average number of affine junctions per unit volume, and by ns the average number of

sliding (non-affine) junctions. The quantities na and ns are assumed to be independent of mechanical factors.

A strand is modelled as an incompressible isotropic elastic medium with the strain energy w that depends

of two first principal invariants of an appropriate right Cauchy–Green tensor. For a strand linked to affine

junctions, the strain energy w is a function of the invariants J1 and J2 of the tensor C, whereas for a strand

connected to sliding junctions, w is a function of the invariants Je1 and Je2 of the tensor Ce. Neglecting the
energy of interaction between strands (this energy is taken into account by the incompressibility condition),

we determine the strain energy density of a polymer (per unit volume) as the sum of the mechanical energies

of strands,
W ¼ nawðJ1; J2Þ þ nswðJe1; Je2Þ: ð31Þ
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For isothermal deformation of an incompressible medium at a reference temperature T0, the Clausius–

Duhem inequality reads (Haupt, 2000)
QðtÞ ¼ � dW
dt

ðtÞ þ R0ðtÞ : DðtÞP 0; ð32Þ
where Q is internal dissipation per unit volume, and the deviatoric component R0 of the Cauchy stress

tensor R is determined by Eq. (26). Substituting expression (31) into Eq. (32) and using Eqs. (15), (26) and

(30), we arrive at the formula
QðtÞ ¼ fR0
sðtÞ � 2ns½we1ðtÞBeðtÞ � we2ðtÞB�1

e ðtÞ	0g : DðtÞ þ fR0
aðtÞ � 2na½w1ðtÞBðtÞ � w2ðtÞB�1ðtÞ	0g

: DðtÞ þ 2aðtÞnsR
0
sðtÞ : ½we1ðtÞBeðtÞ � we2ðtÞB�1

e ðtÞ	0 P 0; ð33Þ
where the functions we1ðtÞ and we2ðtÞ are given by Eq. (12), the functions w1ðtÞ and w2ðtÞ are determined by

Eq. (16), and the prime denotes the deviatoric component of a tensor. Inequality (33) is satisfied for an

arbitrary program of loading, provided that the expressions in braces vanish,
R0
sðtÞ ¼ 2ns½we1ðtÞBeðtÞ � we2ðtÞB�1

e ðtÞ	0; R0
aðtÞ ¼ 2na½w1ðtÞBðtÞ � w2ðtÞB�1ðtÞ	0: ð34Þ
According to Eqs. (33) and (34), the internal dissipation per unit volume reads
QðtÞ ¼ aðtÞR0
s : R0

s P 0:
Eqs. (26) and (34) imply the stress–strain relation
RðtÞ ¼ �P ðtÞIþ 2na½w1ðtÞBðtÞ � w2ðtÞB�1ðtÞ	 þ 2ns½we1ðtÞBeðtÞ � we2ðtÞB�1
e ðtÞ	; ð35Þ
where PðtÞ is pressure. Eq. (35) determines the Cauchy stress tensor R in terms of the left Cauchy–Green

tensors for macro-deformation B and elastic deformation Be. When the number of sliding junctions ns

vanishes, Eq. (35) coincides with the conventional Finger formula for an elastic medium.

It follows from Eqs. (29) and (34) that the left Cauchy–Green tensor for elastic deformation Be obeys the

equality
dBe

dt
ðtÞ ¼ LðtÞ � BeðtÞ þ BeðtÞ � LTðtÞ � 4aðtÞnsVeðtÞ � ½we1ðtÞBeðtÞ � we2ðtÞB�1

e ðtÞ	0 � VeðtÞ:
Bearing in mind that A0 ¼ A� 1
3
I1ðAÞI for an arbitrary symmetric tensor A, and taking into account that

for an incompressible medium,
I1ðBeðtÞÞ ¼ Je1ðtÞ; I1ðB�1
e ðtÞÞ ¼ Je2ðtÞ;
we find that
dBe

dt
ðtÞ ¼ LðtÞ � BeðtÞ þ BeðtÞ � LTðtÞ � 4aðtÞnsVeðtÞ � ½we1ðtÞBeðtÞ � we2ðtÞB�1

e ðtÞ	 � VeðtÞ

þ 4

3
aðtÞns½we1ðtÞJe1ðtÞ � we2ðtÞJe2ðtÞ	V2

eðtÞ: ð36Þ
It follows from Eq. (21) that
VeðtÞ � BeðtÞ � VeðtÞ ¼ B2
eðtÞ; VeðtÞ � B�1

e ðtÞ � VeðtÞ ¼ I:
Substitution of these expressions and Eq. (21) into Eq. (36) implies the kinetic equation for the left Cauchy–

Green tensor for elastic deformation Be,
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dBe

dt
ðtÞ ¼ LðtÞ �BeðtÞþBeðtÞ �LTðtÞ� 4aðtÞns we1ðtÞB2

eðtÞ
�

� 1

3
½we1ðtÞJe1ðtÞ�we2ðtÞJe2ðtÞ	BeðtÞ�we2ðtÞI

�
:

ð37Þ

Bearing in mind the dimensions of the rate-of-strain tensor for plastic flow Dp and the stress tensor R0

s in

Eq. (27), it is convenient to present the coefficient a in the form
aðtÞ ¼ DiðtÞ
Req

; ð38Þ
where
DiðtÞ ¼
2

3
DðtÞ : DðtÞ

� �1=2
ð39Þ
is the intensity of macro-strain rate, and Req is an equivalent stress. Combining Eqs. (37) and (38), we

obtain
dBe

dt
ðtÞ ¼ LðtÞ �BeðtÞ þBeðtÞ �LTðtÞ � 4ns

DiðtÞ
Req

we1ðtÞB2
eðtÞ

�
� 1

3
½we1ðtÞJe1ðtÞ �we2ðtÞJe2ðtÞ	BeðtÞ �we2ðtÞI

�
:

ð40Þ

In what follows, we concentrate on the mechanical response of a network of flexible chains (Treloar, 1975)

with the mechanical energy
wðJ1; J2Þ ¼ cðJ1 � 3Þ; ð41Þ

where c is the average rigidity per strand. Substitution of expressions (12), (16) and (41) into Eq. (35) results

in the stress–strain relation
RðtÞ ¼ �PðtÞIþ 2l½BeðtÞ þ uBðtÞ	; ð42Þ

where l ¼ cns is an analog of the elastic modulus, u ¼ na=ns is the concentration of affine junctions, and the
same notation P is used for the unknown pressure. Combining Eqs. (40) and (41) and using Eqs. (12) and

(16), we arrive at the non-linear differential equation for the evolution of the tensor Be,
dBe

dt
ðtÞ ¼ LðtÞ � BeðtÞ þ BeðtÞ � LTðtÞ � 4lDiðtÞ

Req

B2
eðtÞ

�
� 1

3
Je1ðtÞBeðtÞ

�
: ð43Þ
Formulas (42) and (43) provide constitutive equations for the analysis of experimental data in three-

dimensional mechanical tests. For an arbitrary loading with a constant strain rate Di, these equations

involve three material constants, l, u and Req, to be found by matching observations.

Our aim now is to simplify these relations for uniaxial tension and simple shear of a specimen. We
confine ourselves to active deformation programs, when the elongation ratio and the coefficient of shear

monotonically increase with time.
6. Uniaxial tension

Points of a medium refer to Cartesian coordinates fXig (i ¼ 1, 2, 3) in the stress-free state, to Cartesian

coordinates fxig in the deformed state, and to Cartesian coordinates fnig in the intermediate state at time
tP 0. Uniaxial tension of the incompressible medium is described by the formulas
x1 ¼ kðtÞX1; x2 ¼ k�1=2ðtÞX2; x3 ¼ k�1=2ðtÞX3; ð44Þ
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where k ¼ kðtÞ is an elongation ratio. Transformation of the reference state into the intermediate state is

determined by the equations similar to Eq. (44),
n1 ¼ jðtÞX1; n2 ¼ j�1=2ðtÞX2; n3 ¼ j�1=2ðtÞX3; ð45Þ
where jðtÞ is a function to be found. It follows from Eqs. (44) and (45) that
B ¼ k2e1e1 þ
1

k
ðe2e2 þ e3e3Þ; Be ¼

k
j

� �2

e1e1 þ
j
k
ðe2e2 þ e3e3Þ; ð46Þ
where ei are base vectors of the Cartesian frame fXig. According to Eq. (44), the velocity gradient L reads
L ¼
_kk
k
e1e1

�
� 1

2
ðe2e2 þ e3e3Þ

�
; ð47Þ
where _kkðtÞ ¼ dkðtÞ=dt. Eqs. (39) and (47) imply that
Di ¼
_kk
k
: ð48Þ
Substitution of expressions (46) into Eq. (42) results in
R ¼ R1e1e1 þ R2ðe2e2 þ e3e3Þ;
where the non-zero components of the Cauchy stress tensor are given by
R1 ¼ �P þ 2l
k
j

� �2
 

þ uk2

!
; R2 ¼ �P þ 2l

j
k

	
þ u

k



:

Excluding the unknown pressure P from these equations and the boundary condition R2 ¼ 0 on the lateral

surface of a specimen, we find the true longitudinal stress R1,
R1 ¼ 2l
k
j

� �2
 "

� j
k

!
þ u k2

�
� 1

k

�#
:

The engineering tensile stress re ¼ R1=k reads
re ¼
2l
k

k
j

� �2
 "

� j
k

!
þ u k2

�
� 1

k

�#
: ð49Þ
Substitution of expressions (46)–(48) into the kinetic equation (43) results in the differential equations
d

dt
k
j

� �2
" #

¼ 2

j
dk
dt

k
j

"
� 4l

3Req

k
j

� �3
 

� 1

!#
;

d

dt
j
k

	 

¼ � 1

j
dk
dt

j
k

	 
2
�

� 4l
3Req

1

�
� j

k

	 
3
��

:

These equations are equivalent to the only differential equation for the elongation ratio j,
dj
dk

¼ 4l
3Req

k
j

�
� j

k

	 
2
�
; jð1Þ ¼ 1: ð50Þ
Given a loading program k ¼ kðtÞ, the tensile engineering stress re is determined by Eq. (49), where the

function j obeys Eq. (50).
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7. Simple shear

Simple shear of an incompressible medium is described by the formulas
x1 ¼ X1 þ kX2; x2 ¼ X2; x3 ¼ X3; ð51Þ

where k ¼ kðtÞ is a coefficient of shear. Transformation of the reference state into the intermediate state

is treated as a superposition of simple shear and three-dimensional extension,
n1 ¼ k1X1 þ jX2; n2 ¼ k2X2; n3 ¼ k3X3; ð52Þ

where ki ¼ kiðtÞ and j ¼ jðtÞ are functions to be found. It follows from Eqs. (51) and (52) that the de-

formation gradients F and Fp are given by
F ¼
1 k 0

0 1 0

0 0 1

2
4

3
5; Fp ¼

k1 j 0

0 k2 0

0 0 k3

2
4

3
5: ð53Þ
The incompressibility condition for the viscoplastic flow of junctions reads
k1k2k3 ¼ 1: ð54Þ

Substituting expressions (53) into Eq. (1) and bearing in mind Eq. (54), we find that
Fe ¼
p1 / 0

0 p2 0

0 0 p3

2
4

3
5; ð55Þ
where
p1 ¼ k2k3; p2 ¼ k1k3; p3 ¼ k1k2; / ¼ k3ðk1k � jÞ; k1 ¼ p�1
1 ; k2 ¼ p�1

2 ; k3 ¼ p�1
3 ;

j ¼ p�1
1 k � p3/: ð56Þ
Eqs. (5), (13), (53) and (55) imply that
B ¼
1þ k2 k 0

k 1 0

0 0 1

2
4

3
5; Be ¼

/2 þ p2
1 /p2 0

/p2 p2
2 0

0 0 p2
3

2
4

3
5: ð57Þ
According to Eq. (51), the velocity gradient L and the rate-of-strain tensor D are given by
L ¼ _kk
0 1 0

0 0 0

0 0 0

2
4

3
5; D ¼

_kk
2

0 1 0

1 0 0

0 0 0

2
4

3
5: ð58Þ
It follows from Eqs. (39) and (58) that
Di ¼
_kkffiffiffi
3

p : ð59Þ
Substituting expressions (57)–(59) into Eq. (43), we arrive at the differential equations
d

dt
ð/2 þ p2

1Þ ¼ 2
dk
dt

/p2

(
� 2l

Req

ffiffiffi
3

p ð/2

�
þ p2

1Þ
2 þ /2p2

2 �
1

3
ð/2 þ p2

1 þ p2
2 þ p2

3Þð/
2 þ p2

1Þ
�)

;

d

dt
ðp2

2Þ ¼ � 4l

Req

ffiffiffi
3

p dk
dt

p2
2 ð/2

�
þ p2

2Þ �
1

3
ð/2 þ p2

1 þ p2
2 þ p2

3Þ
�
;
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d

dt
ðp2

3Þ ¼ � 4l

Req

ffiffiffi
3

p dk
dt

p2
3 p2

3

�
� 1

3
ð/2 þ p2

1 þ p2
2 þ p2

3Þ
�
;

d

dt
ð/p2Þ ¼

dk
dt

p2
2

(
� 4l

Req

ffiffiffi
3

p /p2 ð/2

�
þ p2

1 þ p2
2Þ �

1

3
ð/2 þ p2

1 þ p2
2 þ p2

3Þ
�)

:

Simple algebra implies that these equations may be presented in the form
dp1
dk

¼ � 2l

3
ffiffiffi
3

p
Req

p1ð2p2
1 � p2

2 � p2
3 � /2Þ;

dp2
dk

¼ � 2l

3
ffiffiffi
3

p
Req

p2ð�p2
1 þ 2p2

2 � p2
3 þ 2/2Þ;

dp3
dk

¼ � 2l

3
ffiffiffi
3

p
Req

p3ð�p2
1 � p2

2 þ 2p2
3 � /2Þ;

ð60Þ

d/
dk

¼ p2 �
2l

3
ffiffiffi
3

p
Req

/ð5p2
1 þ 2p2

2 � p2
3 þ 2/2Þ: ð61Þ
The initial conditions for Eqs. (60) and (61) read
p1ð0Þ ¼ 1; p2ð0Þ ¼ 1; p3ð0Þ ¼ 1; /ð0Þ ¼ 0: ð62Þ

Multiplying the first equality in Eqs. (60) by p2p3, the other by p1p3, and the last by p1p2, and summing

the obtained results, we find that
d

dk
ðp1p2p3Þ ¼ 0:
This formula together with Eqs. (56) and (62) implies that the incompressibility condition (54) is satisfied

for an arbitrary shear k.
To determine components of the Cauchy stress tensor R, we substitute expressions (57) into Eq. (42). We

focus on the shear stress r ¼ R12 and the first normal difference of stresses N ¼ R11 � R22, which are given

by
r ¼ 2l /p2ð þ ukÞ; N ¼ 2l /2
�

þ p2
1 � p2

2 þ uk2
�
: ð63Þ
Given a deformation program k ¼ kðtÞ, the shear stress r and the first normal difference N are determined

by Eqs. (63), where the functions /, p1 and p2 are governed by ordinary differential equations (60) and (61).
8. Fitting observations in tensile tests

In this section we find adjustable parameters l, u and Req in the constitutive equations by matching the
experimental data in tensile tests depicted in Figs. 1–3 and analyze the effect of strain rate on the material

constants.

We begin with fitting the observations on low-density polyethylene with low molecular weight presented

in Fig. 1. Each stress–strain curve is approximated independently. To find the constants l, u and Req in Eqs.

(49) and (50), we fix some intervals ½0;umax	 and ½0;Cmax	, where the ‘‘best-fit’’ parameters u and
C ¼ 4l
3Req

ð64Þ
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are assumed to be located, and divide these intervals into J subintervals by the points uðiÞ ¼ iDl and

CðjÞ ¼ jDC (i; j ¼ 1; . . . ; J–1) with Du ¼ umax=J and DC ¼ Cmax=J . For any pair fuðiÞ;CðjÞg, Eq. (50) is

integrated numerically by the Runge–Kutta method with the step Dk ¼ 10�5. Given a pair fuðiÞ;CðjÞg, the
elastic modulus l is found by the least-squares method from the condition of minimum of the function
Fig. 4.

tests. U

of the
R ¼
X
kn

rexpðknÞ
�

� rnumðknÞ
�2
;

where the sum is calculated over all experimental points kn depicted in Fig. 1, rexp is the engineering stress

measured in a tensile test, and rnum is given by Eq. (49). The ‘‘best-fit’’ parameters u and C are determined

from the condition of minimum of the function R on the set fuðiÞ;CðjÞ ði; j ¼ 1; . . . ; J–1Þg. After finding the

‘‘best-fit’’ values uðiÞ and CðjÞ, this procedure is repeated twice for the new intervals ½uði�1Þ;uðiþ1Þ	 and
½Cðj�1Þ;Cðjþ1Þ	, to ensure an acceptable accuracy of fitting. Given l and C, the equivalent stress Req is found

from Eq. (64).

The material constants l, Req and u that minimize the discrepancies between the experimental data and

the results of numerical analysis are plotted versus the intensity of strain rate Di in Figs. 4–6 (unfilled

circles). The experimental data are approximated by the relations
l ¼ l0 þ l1 logDi; Req ¼ R0 þ R1 logDi; u ¼ u0 þ u1 logDi; ð65Þ
where the adjustable parameters lm, Rm and um (m ¼ 0, 1) are determined by the least-squares technique. The

first two relations in Eqs. (65) are conventionally employed to describe the effect of strain rate on the elastic

modulus and yield stress of solid polymers. It should be noted, however, that phenomenological equations

(65) are fulfilled for a limited range of strain rates, and they cannot be extrapolated to very low strain rates.

Afterwards, the same procedure of fitting experimental data is repeated to approximate observations on

low-density polyethylene with high molecular weight (Fig. 2) and isotactic polypropylene (Fig. 3). Figs. 1–3
demonstrate excellent agreement between the experimental data and the results of numerical simulation.
The elastic modulus l MPa versus the strain rate intensity Di s
�1. Symbols: treatment of observations in tensile and compressive

nfilled circles: LDPE-L. Filled circles: LDPE-H. Asterisks: iPP. Stars: LDPE-H in compressive tests. Solid lines: approximation

experimental data by Eqs. (65). Curve 1: l0 ¼ 61:45, l1 ¼ 7:23. Curve 2: l0 ¼ 41:08, l1 ¼ 3:92. Curve 3: l0 ¼ 432:57, l1 ¼ 68:53.



Fig. 5. The equivalent stress Req MPa versus the strain rate intensity Di s
�1. Symbols: treatment of observations in tensile and com-

pressive tests. Unfilled circles: LDPE-L. Filled circles: LDPE-H. Asterisks: iPP. Stars: LDPE-H in compressive tests. Solid lines:

approximation of the experimental data by Eqs. (65). Curve 1: R0 ¼ 8:11, R1 ¼ 1:08. Curve 2: R0 ¼ 6:65, R1 ¼ 0:88. Curve 2a:

R0 ¼ 11:50, R1 ¼ 0:88. Curve 3: R0 ¼ 24:01, R1 ¼ 1:77.

Fig. 6. The concentration of affine junctions u versus the strain rate intensity Di s
�1. Symbols: treatment of observations in tensile tests.

Unfilled circles: LDPE-L. Filled circles: LDPE-H. Asterisks: iPP. Solid lines: approximation of the experimental data by Eqs. (65).

Curve 1: u0 ¼ 2:56� 10�2, u1 ¼ �9:57� 10�3. Curve 2: u0 ¼ 1:45� 10�1, u1 ¼ �4:73� 10�3. Curve 3: u0 ¼ 3:91� 10�2,

u1 ¼ 5:95� 10�3.
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The adjustable parameters l, Req and u found by matching observations in tensile tests on LDPE-H and

iPP are also depicted in Figs. 4–6 (filled circles and asterisks, respectively). These figures show that Eqs. (65)
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correctly describe the effect of strain rate on the quantities l, u and Req (the only exception is the value of u
for LDPE-H at the smallest cross-head speed).

According to Fig. 4, the elastic modulus l linearly grows with the logarithm of strain rate. The rate of

increase is practically independent of chemical structure of the polymers under consideration: the ratio
rl ¼ l1=l0 that characterizes this rate equals 0.12 for LDPE-L, 0.10 for LDPE-H and 0.16 for iPP. The

modulus l0 is the largest for iPP and the smallest for LDPE-H.

To explain the dependence of the elastic modulus on strain rate, we recall that the model disregards

viscoelasticity of semicrystalline polymers. According to the theory of transient networks (Tanaka and

Edwards, 1992), the viscoelastic behavior of a network of chains reflects separation of active strands from

temporary junctions and merging of dangling strands with the network. Detachment and attachment events

occur at random times, when appropriate strands are excited by thermal fluctuations. To account (in a

simple way) for rearrangement of a polymer network under deformation with a constant strain rate, we
distinguish two groups of strands:

1. The characteristic time for rearrangement of strands belonging to the first group is substantially smaller

than the characteristic time of macro-deformation (which means that stresses totally relax when these

strands separate from their junctions, and the contribution of these strands into the strain energy density

W is negligible).

2. The characteristic time for rearrangement of strands belonging to the other group noticeably exceeds the

characteristic time for macro-deformation (which implies that detachment and attachment of these
strands can be disregarded at the experimental time scale, and they may be treated as permanent).

According to this division of strands into two groups, the number (per unit volume) of strands bridged by

permanent junctions monotonically grows with the strain rate, because an increase in the rate of macro-strain

results in a decrease in the characteristic time of deformation, and, as a consequence, a decrease in the content

of strands that rearrange under loading. Bearing in mind that the coefficient l is proportional to the con-

centration of permanent strands, we conclude that the viscoelastic phenomena may be adequately described

by assuming the elastic modulus to depend on strain rate in accord with phenomenological relation (65).
It is worth noting that the modulus l is determined by fitting the entire stress–strain curves. This means

that this modulus may substantially differ from the conventional Young modulus found by matching initial

parts (corresponding to small strains) of the stress–strain diagrams. Comparison of our data with those

reported by Lu and Sue (2002) shows that Young�s moduli of LDPE-L and LDPE-H exceed appropriate

values of l by a factor of 3.

Fig. 4 demonstrates that the elastic modulus of LDPE with low molecular weight exceeds that of LDPE-

H. At first glance, this conclusion seems paradoxical, because it contradicts the conventional standpoint in

rubber elasticity, according to which elastic moduli increase with molecular weight (Treloar, 1975). This
result may, however, be explained by the difference in the degrees of crystallinity of polyethylenes with

different molecular weights. Graham et al. (1997) reported that the growth of the average molecular weight

by twice (from 58,000 to 104,500 g/mol) implied a decrease in the degree of crystallinity by 25% (from 30%

to 23%). As the elastic modulus of crystallites substantially exceeds that of the amorphous phase, a decrease

in the degree of crystallinity induces in a pronounced reduction of moduli, in agreement with the obser-

vations depicted in Fig. 4.

Fig. 5 demonstrates that the equivalent stress Req linearly increases with the logarithm of strain rate

following the same pattern as the elastic modulus l. The slopes of the graphs depicted in Fig. 5 are weakly
affected by chemical structure of the polymers: the ratio rR ¼ R1=R0 that characterizes these slopes equals

0.13 for LDPE-L and LDPE-H and 0.07 for iPP. It is worth noting a strong similarity between the values of

rl and rR, especially for the polyethylenes.
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It is of interest to compare the equivalent stress Req with the yield stress Ry for these polymers (deter-

mined as the point of intersection between the tangent straight lines to the stress–strain diagrams at small

and large strains, respectively). Comparison of Figs. 1–3 and 5 implies that for all three polymers, the ratio

Req=Ry is constant and it equals approximately 0.6. Assuming Req to be proportional to the yield stress Ry,
we conclude (based on the observations depicted in Fig. 5) that the yield stress of LDPE-L exceeds that of

LDPE-H. This result is in agreement with the experimental data reported by Graham et al. (1997), which

show that the growth of the molecular weight implies a decrease in the yield stress, and with observations

by Brooks et al. (1999a), which reveal that the growth of the degree of crystallinity (Fig. 4 demonstrates

that this parameter is higher for LDPE-L than for LDPE-H) causes an increase in the yield stress and a

decrease in the yield strain.

According to Fig. 6, the ratio u of the number of strands linked to affine junctions na to the number of

strands connected to sliding junctions ns decreases with strain rate for LDPE-L and LDPE-H and increases
for iPP.

The reduction of u with strain rate for polyethylenes seems quite natural. It means that the higher the

strain rate Di is, the more intensive is breakage of van der Waals links between strands (both in the

amorphous and crystalline phase) that restrict molecular mobility of chains and prevent sliding of junc-

tions. This implies that the number of strands connected to affine junctions na decreases with Di, in accord

with the observations depicted in Fig. 6.

Unlike the polyethylenes, the ratio u for iPP increases with strain rate. The latter may be attributed to

strain rate-induced fragmentation of transverse lamellae in spherulites, which results in release of the rigid
amorphous phase, where mobility of junctions was severely restricted by lamellar cross-hatching. This

implies that both parameters na and ns grow with Di, but an increase in na is more pronounced than that in

ns (after release of the rigid amorphous fraction, most junctions in the previously occluded domains move

affinely), which is reflected by the growth of u with strain rate.

One of the basic hypotheses in the theory of rubber elasticity (Treloar, 1975) is that junctions move

affinely with the bulk material, which implies that sliding of junctions is thought of as an anomalous

phenomenon. On the contrary, our analysis of experimental data in tensile tests (Fig. 6) reveals that

sliding of junctions with respect to their reference positions is quite typical, whereas the concentration of
affine (non-sliding) junctions is extremely small (a few percent for iPP and LDPE-L and less than 20% for

LDPE-H).

Fig. 6 demonstrates that the value of u for LDPE-H substantially exceeds that for LDPE-L (approxi-

mately by a factor of 5). This result may be explained as follows. As the elastic modulus of the crystal-

line phase substantially exceeds that of the amorphous phase, the viscoplastic response of a semicrystalline

polymer (or, at least, its major part) may be associated with fine and coarse slip of lamellar blocks

(Gaucher-Miri and Seguela, 1997; Seguela, 2002). This implies that affine motion of junctions (at which

the deformation gradients for micro- and macro-deformations coincide) may be attributed to imperfect-
ness of crystallites, because regular packing of chains in lamellae results in large friction between layer-like

structures that causes a pronounced ‘‘delay’’ in their micro-deformation compared to the macro-

deformation of a specimen. As a consequence, the content of affine junctions u in LDPE-H noticeably

exceeds that in LDPE-L, because the crystalline structures in LDPE with high molecular weight and

highly branched chains are pronouncedly less perfect (and permit slip of crystalline layers at notice-

ably lower stresses) than those in LDPE with low molecular weight. The fact that the perfectness of

crystallites in polyethylene is strongly affected by branching of chains and the concentration of entangle-

ments was recently confirmed by differential scanning calorimetry (DSC) measurements (Fan et al.,
2003).

To verify this explanation, we analyze the viscoplastic behavior of low-density polyethylene with high

molecular weight (LDPE-H) in uniaxial compressive tests.



6236 A.D. Drozdov, R.K. Gupta / International Journal of Solids and Structures 40 (2003) 6217–6243
9. Uniaxial compression

As is well known (Drozdov, 1998), conventional constitutive models for rubber-like materials fail to

correctly describe experimental data at compression when their material constants are determined by
matching observations in uniaxial tensile tests with finite strains.

The purpose of this section is twofold: (i) to demonstrate that governing equations (49) and (50) ade-

quately describe the stress–strain curves at compression, and (ii) to verify the following three conclusions

drawn from the analysis of experimental data in tensile tests:

1. Derivation of Eq. (42) implies that the elastic modulus l is independent of pressure P . Thus, it is natural

to expect that the coefficient l found by fitting experimental data at compression is close to that deter-

mined by matching observations at uniaxial tension.
2. According to conventional approaches in the plasticity theory for crystalline (Kuroda, 2003) and porous

(Lee and Oung, 2000) materials, an increase in pressure results in the growth of the yield stress Ry of

pressure-sensitive media. It is shown in Section 8 by fitting experimental data at uniaxial tension that

the equivalent stress Req is proportional to Ry. As semicrystalline polymers are pressure-sensitive mate-

rials (Monasse et al., 1997; Butler et al., 1998; Brooks et al., 1999a), we expect that the equivalent stress

at compression noticeably exceeds that at tension.

3. According to the hypothesis which associates affine junctions with lamellar blocks with negligible friction

between layer-like structures, at compression, when hydrostatic pressure severely resists slippage of the
layers with respect to one another, the concentration of affine junctions u is essentially smaller than that

under tension.

To validate these conclusions, two compressive tests were performed at room temperature on LDPE-H

by using testing machine Instron-5869. The samples for the experimental analysis were injection-molded in

the form of circular plates with diameter 61.8 mm and thickness 3.1 mm. Following protocol ASTM D-695,

piles of 5 and 10 plates (the slenderness ratio of 1.0 and 2.0) were compressed with the relative rate of

motion of grips 0.1 mm/min. For the piles, this speed corresponded to compressive Hencky strain rates
_��H ¼ 1:08� 10�3 and 5.38 · 10�4 s�1, respectively. Before the tests, the specimens were slightly preloaded

(the maximal compressive force at preloading was about 0.4 kN that corresponded to 1% of the maximal

force in the experiments), to exclude fluctuations of stresses driven by possible warpage of plates and to

ensure flatness of the surfaces of piles.

The maximal compressive Hencky strain was chosen to be �Hmax ¼ 0:18. Our choice is explained by the

fact that the compressive load reaches 42 kN at this strain, whereas the maximal capacity of the load cell

was 50 kN. The above value of the maximal compressive strain is close to �max ¼ 0:13 recommended by

ASTM D-1621.
The compressive force was measured by a standard load cell. The deflection of specimens was deter-

mined from the cross-head movement. The engineering compressive stress re was calculated as the ratio of

the compressive force to the cross-sectional area of stress-free specimens.

Experiments were performed at least three days after injection-molding of samples. Each test was

conducted on a new specimen.

The engineering compressive stress re is plotted versus the compressive Hencky strain �H in Fig. 7.

The stress–strain diagrams demonstrate strongly non-linear dependencies of stress re on the strain �H
and show that for a given Hencky strain �H, the stress re monotonically increases with the strain
rate.

For a uniaxial compression with a constant rate of Hencky strain _��H ¼ � _kk=k, the kinetic equation

(50) remains unchanged, whereas the stress–strain relation (49) for the engineering compressive stress

reads



Fig. 7. The compressive engineering stress re MPa versus the compressive Hencky strain �H in compressive tests with _��H ¼ 1:08� 10�3

s�1 (unfilled circles) and _��H ¼ 5:38� 10�4 s�1 (filled circles). Symbols: experimental data for LDPE-H. Solid lines: results of numerical

simulation.
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The adjustable parameters l, Req and u in Eqs. (50) and (66) are determined by using the algorithm of

matching observations described in Section 8. Fig. 7 demonstrates good correspondence between the

experimental data and the results of numerical analysis.

The material constants l, Req and u that ensure the best-fit of observations are plotted versus the in-

tensity of strain rate Di ¼ _��H in Figs. 4–6. According to Fig. 4, the values of the elastic modulus l found by

matching the stress–strain curves at compression (stars) are in excellent agreement with curve 2 that ap-

proximates the dependence of the elastic modulus on strain rate under tension.

Fig. 5 demonstrates that the equivalent stress Req at compression is higher (by twice) than that at tension,
but it follows approximately the same dependence on strain rate (as we have only two experimental points

at compression, the function ReqðDiÞ is approximated by the straight line (65) with the same slope as that for

uniaxial tension).

For both stress–strain curves depicted in Fig. 7, it is found that the ‘‘best-fit’’ value of u equals zero. This

means that application of hydrostatic pressure results in so pronounced increase in friction between layer-

like structures in crystallites that affine junctions totally disappear.

These conclusions confirm the above hypotheses and demonstrate that the adjustable parameters of the

model are affected by strain rate and pressure in a physically plausible way.
10. Numerical simulation of simple shear

In the approximation of the experimental data in tensile tests, a noticeable difference has been revealed
between the values of u for low-density polyethylenes with low and high molecular weights. The aim of this
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section is to show that this quantitative difference implies a qualitative difference in the mechanical re-

sponses of LDPE-L and LDPE-H. For this purpose, we analyze numerically the effect of shear rate on the

shear stress and the first normal difference of stresses at simple shear of an incompressible medium with

finite strains.
Eqs. (60) and (61) with initial conditions (62) are integrated numerically by the Runge–Kutta method

with the step Dk ¼ 10�4 in the interval between k ¼ 0 and k ¼ 1. Five shear rates _kk ¼ 0:01, 0.1, 1.0, 10.0 and

100.0 s�1 are employed in the numerical simulation. The shear stress r and the first normal difference N are

determined by Eqs. (63). The effect of strain rate on the adjustable parameters l, Req and u is described by

Eqs. (65), where the strain rate intensity Di is given by Eq. (59). We use the coefficients lm, Rm and um

(m ¼ 0, 1) in Eqs. (65) found by fitting the experimental data for LDPE-L and LDPE-H depicted in Figs. 1

and 2. The shear stress r and the first normal difference of stresses N are plotted versus the coefficient

of shear k in Figs. 8 and 9 for LDPE-H and in Figs. 10 and 11 for LDPE-L, respectively.
Fig. 8 shows that at all strain rates under consideration, the shear stress r rapidly increases with k in the

initial interval of deformations (k < 0:2), and grows linearly with k afterwards. Given k, the shear stress

monotonically increases with the strain rate, but this growth is rather modest: when the shear rate increases

by four orders of magnitude, the shear stress grows by about 43%. Fig. 9 demonstrates that given a strain

rate _kk, the first normal difference of stresses N grows as a quadratic function of k. For a fixed k, the first

normal difference weakly increases with the strain rate: by about 34% when _kk grows from 0.01 to 100 s�1.

After an initial period of deformations, when k > 0:2, the first normal difference of stresses N is propor-

tional to the square of shear stress r, in agreement with the Lodge–Meissner rule (Lodge and Meissner,
1972). According to Figs. 8 and 9, the rate-dependent response of LDPE with high molecular weight is

quite typical of rubbery polymers and polymer melts.

Fig. 10 shows that given a shear rate _kk, the shear stress r monotonically increases with the coefficient of

shear (rather strongly at the initial period of deformations, and linearly afterwards). Unlike LDPE-H, the

slope of the curve rðkÞ for LDPE-L within the region of steady viscoplastic flow strongly depends on the

strain rate and monotonically decreases with _kk. This leads to intersection of the stress–strain curves at
Fig. 8. The shear stress r MPa versus the coefficient of shear k in shear tests with the strain rates _kk ¼ 0:01, 0.1, 1.0, 10.0 and 100.0 s�1

from bottom to top, respectively. Solid lines: results of numerical simulation for LDPE-H.



Fig. 9. The first normal difference N MPa versus the coefficient of shear k in shear tests with the strain rates _kk ¼ 0:01, 0.1, 1.0, 10.0 and

100.0 s�1 from bottom to top, respectively. Solid lines: results of numerical simulation for LDPE-H.

Fig. 10. The shear stress r MPa versus the coefficient of shear k in shear tests with the strain rates _kk ¼ 0:01, 0.1, 1.0, 10.0 and 100.0 s�1

from bottom to top, respectively. Solid lines: results of numerical simulation for LDPE-L.
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relatively large coefficients of shear. Fig. 11 demonstrates a rather sophisticated dependence of the first
normal difference N on the coefficient of shear k. The function NðkÞ reveals a pronounced shoulder near the

point k � 0:2, which substantially grows with the shear rate. In the interval between k ¼ 0 and k ¼ 0:4, an
increase in the shear rate results in the growth of the first normal difference of stresses. The stress–strain

curves corresponding to different values of _kk intersect in the vicinity of the point k ¼ 0:4, and at higher



Fig. 11. The first normal difference N MPa versus the coefficient of shear k in shear tests with the strain rates _kk ¼ 0:01, 0.1, 1.0, 10.0 and

100.0 s�1 from bottom to top, respectively. Solid lines: results of numerical simulation for LDPE-L.

6240 A.D. Drozdov, R.K. Gupta / International Journal of Solids and Structures 40 (2003) 6217–6243
strains, an increase in the shear rate leads to a decrease in N . Although the Lodge–Meissner law is satisfied

for a steady viscoplastic flow, the area of its applicability is noticeably shifted to relatively large strains.

The dependencies rðkÞ and NðkÞ similar to those depicted in Figs. 10 and 11 have been previously

observed in polymer solutions (Oberhauser et al., 1998; Osaki et al., 2000) and particle gels (Whittle and

Dickinson, 1997). The results of numerical simulation demonstrate that semicrystalline polymers with

relatively low molecular weight may also reveal such an ‘‘unusual’’ mechanical behavior at high shear rates.
11. Concluding remarks

Three series of tensile tests have been performed at ambient temperature on injection-molded isotactic

polypropylene and two commercial grades of low-density polyethylene with low and high molecular

weights. Experiments have been carried out at finite strains (up to 50%) with cross-head speeds ranging

from 3 to 250 mm/min that cover the entire region of strain rates used in quasi-static tensile tests.

A constitutive model has been derived for the isothermal viscoplastic behavior of semicrystalline

polymers at finite strains. A polymer is treated as an equivalent network of chains bridged by permanent

junctions. Two types of junctions are introduced: (i) affine whose micro-deformation coincides with macro-
deformation of a specimen, and (ii) sliding that slip with respect to their reference positions under loading.

Sliding of junctions reflects (i) sliding of entanglements with respect to chains in the amorphous phase, (ii)

slippage of tie chains along lamellar surfaces, and (iii) fine and coarse slip of lamellar blocks. The rate of

sliding of junctions is proportional to the intensity of macro-stresses.

Constitutive equations for an equivalent non-affine network of chains are developed by using the laws of

thermodynamics. The governing equations consist of stress–strain relation (35) and a non-linear differential

equation (40) for the evolution of the left Cauchy–Green tensor for elastic deformation. For a Gaussian

network of flexible chains, these relations involve three material parameters: the elastic modulus l, the
equivalent stress Req and the concentration of affine junctions u.
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The constitutive equations are simplified for uniaxial tension and simple shear of an incompressible

medium with finite strains. The material constants are found by fitting the observations in tensile tests with

various strain rates. Fair agreement is demonstrated between the experimental data and the results of

numerical simulation.
The following conclusions are drawn:

1. The modulus l is independent of pressure, and it monotonically increases with the intensity of strain rate

Di. This growth may be explained by the material viscoelasticity. The slopes of the graphs lðDiÞ are sim-

ilar for the polyolefins under consideration. The modulus of LDPE with low molecular weight exceeds

that of LDPE with high molecular weight, which is associated with a smaller degree of crystallinity in

LDPE-H.

2. The equivalent stress Req increases with strain rate in the same way as the yield stress Ry determined by
conventional methods. The rate of increase is the highest for polyethylenes (and it is independent of their

molecular weight) and the lowest for polypropylene. The equivalent stress at compression noticeably ex-

ceeds that at tension.

3. The ratio u decreases with strain rate for polyethylenes (due to the rate-induced breakage of links be-

tween chains which prevented sliding of junctions in a stress-free medium) and increases for iPP (which

is attributed to fragmentation of tangential lamellae and release of the rigid amorphous fraction). The

content of affine junctions in LDPE with high molecular weight noticeably exceeds that in LDPE with

low molecular weight (this reflects the difference in the perfectness of crystals of the two grades of poly-
ethylene). The concentration of affine junctions at tension is substantially higher than that at compres-

sion (because hydrostatic pressure increases friction between layer-like structures in crystallites and

prevents their slippage with respect to one another).

4. The quantitative difference between the values of u for LDPE-L and LDPE-H results in a qualitative

difference in their responses at simple shear. The behavior of LDPE with high molecular weight is similar

to that of elastomers and polymer melts (monotonic dependencies of the shear stress and the first normal

difference of stresses on the coefficient of shear and the rate of shear). On the contrary, LDPE with low

molecular weight reveals a pattern typical of polymer solutions and suspensions of particles (a non-
monotonic dependence of the first normal difference on the coefficient of shear at high shear rates).
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